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ANALYSIS AND OPTIMAL DESIGN OF PRESSURIZED,

IMPERFECT, ANISOTROPIC RING-STIFFENED CYLINDERS

ABSTRACT

Development of an algorithm to perform the structural analysis and op-

timal sizing of buckling resistant, imperfect, anisotropic ring-stiffened cylin-

ders subjected to axial compression, torsion, and internal pressure is

presented. The structure is modeled as a branched shell. A nonlinear

axisymmetric prebuckling equilibrium state is assumed which is amenable to

exact solution within each branch. Buckling displacements are represented

by a Fourier series in the circumferential coordinate and finite elements in

the axial or radial coordinate. A separate, more detailed analytical model is

employed to predict prebuckling stresses in the flange/skin interface region.

Results of case studies indicate that a nonlinear prebuckling analysis is

needed to accurately predict buckling loads and mode shapes of these cyl-

inders, that the rings have a greater Influence on the buckling resistance as

the relative magnitude of the torsional loading to axial compression loading

is increased, but that this ring effectiveness decreases somewhat when

internal pressure is added.

The enforcement of stability constraints is treated in a way that does not

require any eigenvalue analysis. Case studies performed using a combina-

tion of penalty function and feasible direction optimization methods Indicate

that the presence of the axisymmetric initial imperfection in the cylinder wall
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can significantly affect the optimal designs. Weight savings associated with

the addition of two rings to the unstiffened cylinder and/or the addition of

internal pressure is substantial when torsion makes up a significant fraction

of the combined load state.

Assumption of criticality of the stability constraints and neglect of the

.... thestress constraints during the optimal sizing of ; cylinders PrOduced de-

signs that nevertheless satisfied all of the stress constraints, in general, as

well as the stability constraints. Subsequent re-sizing of one cylinder to sat-

isfy a violated in-plane malr!x cracking constraint resulted in an optimal de-

sign that was 49% heavier than the optimal design produced when this

constraint was ignored.

The additional internal pressure necessary to produce a violation of a

stress constraint for each optimal design was calculated. Using an unsym-

metrically laminated ring flange, a substantial increase in the strength of the

flange/skin joint was observed.
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Chapter I

INTRODUCTION, OBJECTIVE AND BACKGROUND INFORMATION

1.1 Introduction

Significant advancement in the state-of-the-art of analysis and design of advanced

composite materials and structures has led aerospace vehicle manufacturers to incorpo-

rate increasing amounts of composite structure into new vehicle designs. Motivated by

the potential for significant weight savings and the possible replacement of complicated

structural assemblies by single, co-cured composite components, design engineers and

researchers today seek to incorporate composite materials into primary load-bearing

structure. One candidate for such an @plication is the fuselage of next-generation

transport aircraft, a stiffened cylindrical shell. The problem that confronts the manu-

facturer is to determine the material distribution among the cylinder skin and stiffening

elements resulting in a weight-efficient vehicle that can withstand the imposed loads.

Using laminates made of advanced composite materials, the designer has much more

flexibility than he has with metals in that he can tailor the strength and stiffness of in-

dividual structural components by varying the ply orientations and/or thicknesses of the

layers comprising the laminate. This type of tailoring, along with optimum sizing of

the stiffening elements, yields a very efficient su'ucmral design. Since the cost of com-

posite structure fabrication today is still relatively high, it is prudent to take advantage

of this tailorability and use composites to their full potential. However, many important

technological issues must still be resolved. In their report, Jackson, et. al.l propose a

full scale analysis, design and test effort to qualify advanced composite structure for

use in the fuselage of both civil and military transport aircraft. They present an ex-

haustive list of technical issues which would need to be addressed before such structure

could be qualified for flight. Dickson and Biggers 2 addressed many of these issues

while successfully designing and building a full scale advanced composite stiffened

panel Industrial interest in design optimization of such panels led to the development



by Bushnell3'4 of PANDA and PANDA2, two computer programs which aid the engi-

neer in the design of minimum weight stiffened panels.

The work described in this document outlines the development of a methodology

to perform the structural analysis and minimum weight structural sizing of the lami-

nated fiber reinforced composite stiffened cylinder depicted in Fig. 1.1.1. The problem

can be described as follows. First, the su'uctural analysis must contain sufficient de-

tail to provide reliable estimates of response quantifies that constrain the design. For

example, as will be discussed in section 2.2, detAil._ such as initial geometric imperfec-

tions and the deformation of stiffener cross-sections, phenomena typically ignored or

addressed in only an approximate manner, can have a significant effect on the buckling

loads of shell structures. These buckling loads generally represent critical constraints

on the design of thin-walled structure. Second, the structural analysis must be made

efficient enough to be incorporated into a structural sizing algorithm which may re-

quire the performance of several hundred structural analyses. Actual incorporation of

the structural analysis into a structural sizing algorithm represents the final step in the

process.
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1.2Objectives

Current computer programs written for optimal sizing of stiffened cylinders suffer

from one or more of the following simplifying assumptions

1. A linearized prebuclding equilibrium state.

2. Modeling the stiffeners as beam elements.

3. A perfect bond of zero thickness between the shell wall and stiffener

attachment flange.

These commonly made assumptions constitute serious deficiencies for optimal design,

as will be discussed in greater depth in section 2.2. The main purpose of the present

study is to investigate the optimal sizing of anisotropic, ring-stiffened cylinders us-

ing a structural analysis devoid of these deficiencies. Several objectives wiU be met

as part of this investigation. The first objective of the present study is to develop an

efficient structural analysis to predict prebuckling deformations, prebuckling stresses,

and buckling loads of anlsotropic, ring-stiffened circular cylindrical shells subjected

to axial compression, torsion, and internal pressure loadings. The structure is mod-

eled as a branched shell. A nonlinear axisymmetric prebuckling equilibrium state is

assumed which is amenable to exact solution within each branch. Axisyrametric geo-

metric imperfections are included. The second objective is to implement the structural

analysis into a structuralsizing algodtlun that will be used to develop minimum weight

ring-stiffened cylinders for a future experimental investigation. The effects of initial

geometric imperfections and pressurization on the minimum weight designs are inves-

tigated. The final objective is to evaluate local stresses in the area adjacent to the ring-

to-shell interface of the optimal designs. The effects of an imperfect, geometrically

nonlinear prebuciding equilibrium state and internal pressurization on optimal stiffened

shell designs, and on the ring/shell interface stresses in these designs, are technical is-

sues expected to directly affect the fuselage designs of next-generation transport air-

craft.

3



1.3 Background Information

1.3.1 Mathematical Models of Stiffened Shell Structures

As described in the text by Niu 5 three major buckling modes constraining the de-

signs of stiffened shell structures such as an aircraft fuselage are; local instability of

the stiffener segments, panel instability, and general instability. Local instability in-

volves buckling of the individual parts of the stiffeners (flanges, webs, etc.), panel

instabilityimpliesbuckling of the shellin the panel lengthbetween two rings,and

generalinstabilityimpliesthatthe rings,not being rigidenough to enforce node lines

along theirlinesof attachmentto the shell,buckle along with the restof the cylindrical

shell.Traditionally,thesethreetypes of instabilityare analyzed as separatephenomena.

Local instabilityisevaluatedby modeling a stiffenerflangeor web as a platesegment

having boundary conditions assumed to result in conservative buckling load estimates

such as simple as opposed to clamped or elastically restrained supports. Panel instabil-

ity is evaluated by smearing the sfiffnesses of any longitudinal stiffeners into an equiv-

alent orthouvp/c shell layer and treating the shell segment between rings as a simply

supported monocoque cylinder. General instability has been traditionally evaluated by

smearing both the stringer and ring stiffnesses out over the entire shell surface. With

the advent of more powerful computers and analytical techniques, the smeared model is

slowly giving way to models which treat the stiffeners as discrete elements.

1.3.2 Equilibrium and Buckling Analyses of Stiffened Cylinders

A significant amount of literature devoted to the study of buckling of shells de-

scribesthe advantages and disadvantagesof calculatingbuckling loads based on "clas-

sical"and "nonclassical"theories.In hissurvey paper,Bushnells provides an excellent

explanationof thesetwo typesof theories.In the "classical"type of analysis,the pri-

mary (or prebuclded)equilibriumstateof the structureisassumed to be freeof any

bending deformations (rotationiess). This greatly simplifies the analysis. In the classi-

cal buckling analysis of cylin_al shells, effects of the boundaries on the prebuckled

4



equilibrium state are ignored and the shell is assumed to be perfectiy smooth (free of

any initial geometric imperfections) so that a pure membrane state of stress can be as-

sumed to exist in the unbuckled cylinder. However, the effects of boundary conditions

are considered in the solution of the equations governing the stability of the structure;

hence, there is an inconsistency between the buckling analysis and the analysis of the

prebuckled equilibrium state. This inconsistency can be eliminated by abandoning the

assumption of a pure membrane prebuckled equilibrium state - a characteristic of many

"nonclassical" theories. In an axisymmetrically loaded cylindrical shell, bifurcation

buckling can occur from an axisymmetric prebuckled equilibrium configuration into a

general asymmetric configuration. The axisymmetric prebuckled equilibrium state may

include a substantial amount of bending, especially if geometric imperfections in the

shell wall are accounted for. Substantial bending in the presence of membrane loading

means that the deformation is a nonlinear function of the applied load; hence, the equa-

tions governing the stability of the axisymmetric equilibrium configuration are non-

linear functions of the applied load - a nonlinear buckling eigen_aIue problem. This

type of eigenvalue problem is in contrast to the linear buckling eigenvalue problem

generated when the prebuckling equilibrium state is assumed to exhibit geometrically

linear behavior as in the case of classical buckling of a cylindrical shell. The load-

displacement curve describing the nonlinear prebuckled equilibrium state may contain

points at which bifurcation occurs (intersection of equilibrium paths), or the curve may

reach a relative maximum. This relative maximum is referred to as a limit point. For

elastic, conservative systems, buckling occurs either at a bifurcation point or a limit

point.

A major factor complicating the theoretical analysis of both the prebuckling equi-

librium state and the stability of shells is the complexity of the governing equations.

Unlike plates, coupling between flexural and membrane behavior cannot be ignored

even when the deformations are extremely small; furthermore, there is no universally

accepted set of equations governing shell response as there is in the case of plate the-

5



ory. The form of the strain-displacement equations is a particular focal point of con-

troversy; researchers tend to disagree as to which terms in these equations must be re-

tained and which ones can be neglected. The result of this controversy is a large num-

ber of theories ranging from the most complicated (Fltigge's) to the simplest (DonneH

- Mushtari - Vlasov). As will be discussed in Chapter 2, the literature is replete with

information to help guide those interested in selecting an appropriate theory for a par-

ticular problem.

In most applications, a thorough prebuckling su,ess analysis is warranted in ad-

dition to the buckling analysis. Under certain types of loads, thin shells can exhibit

regions of high local stress. In metals, yielding of the material occurs relieving these

stresses; however, in brittle materials, such as advanced composites, stress relief must

come from other sources such as transverse matrix cracking, local fiber failure and de-

lamination. Experimental work, such as that reported by Starnes, et. al,7, indicates that

the region adjacent to skin/stiffener attachment areas warrants special attention since

this is typically a region where high local stresses occur. It is, therefore, possible that

a certain configuration might fail due to such a stress concentration before buckling

occurs, requiring a thorough and accurate prebuckling stress analysis to predict such a

failure.

1.3.3 Structural Optimization and Mathematical Programming

Engineers originally relied on futly stressed and/or simultaneous failure mode de-

sign philosophies in order to develop minimum weight designs. Then Schmit s pre-

sented a landmark paper in 1960 proposing the application of nonlinear mathemati-

cal programming techniques to develop minimum weight structural designs satisfying

a specified set of constraints with the aid of a digital computer. He coined the term

structural synthesis (today more commonly referred to as structural optimization) to de-

scribe the procedure and showed that in many cases the fully stressed / simultaneous

failure mode design approaches did not produce truly optimum designs. Engineers gen-

6



erally apply structural optimization techniques to either minimize weight or maximize

performance, which becomes the objective function of the mathematical programming

problem. The constraint set reflects other structural requirements or restrictions that

need to be imposed to achieve a usable design. Mathematical programming (IMP) tech-

niques used to solve structural optimization problems are of one of two types - indirect

techniques and direct techniques. Indirect techniques involve replacing the constrained

minimization (or maximization) problem with a set of unconstrained problems. These

are called sequential unconstrained minimization techniques or SUMT and include the

penalty function methods. Direct MP techniques deal with the objective and constraint

functions individually. In either MP technique a method must be chosen to minimize

or maximize a nonlinear function of several variables. Newton's method, certainly the

most well-known, requires formulation of the Hessian matrix (second derivatives of

the objective function and constraints with respect to the design variables); hence, it is

called a second order method. Since second derivatives tend to be computationally ex-

pensive to calculate, first order methods involving only first derivative (gradient) infor-

marion tend to be more popular. Derivative information is generally obtained exactly,

or approximately using finite differences. If it is not feasible to calculate any deriva-

tive information at all, a zero order method, requiring function evaluations only, may

be used.

The optimum designs generated by a structural optimization algorithm may or

may not be unique. The design variables and the constraints define what is known as a

design space. If this design space is convex, then only one point in this space will sat-

isfy the conditions of optimality and the optimum design is called a global optimum.

The necessary conditions are generally referred to as the Kulm-Tucker conditions. (See

section 5.1 of Ref. 9. A discussion of the Kuhn-Tucker conditions is presented in sec-

tion 6.8). This is true, for example, of problems where the objective function and all

the constraints are linear functions of the design variables. For problems where the ob-

jective function and/or the consu'aints are nonlinear functions of the design variables,



convexity of the objective function and constraints need to be established. Many struc-

tural optimization problems result in a design space which is generally nonconvex. In

this case many points satisfying the Kuhn-Tucker conditions may exist in the design

space. Of these points, the one _ulting in the true extremum of the objective function

is the global optimum; the other points are called re/at/t,e optima or relative minima.

Alternative optima or alternative minima are points in the design space satisfying

the Kulm-Tucker conditions yielding the same value of the objective function as other

optima.
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Chapter2

REVIEW OF PERTINENTLITERATURE

2.1 ShellTheories

A wide variety of different theories exists upon which to form the basis of a thin

shell structural analysis. The publication by Leissa x° contains an excellent compar-

ison of the various theories used in linear shell analysis. Such a comprehensive dis-

cussion of the various geometrically nonlinear theories has yet to be published. Of the

theories employed in the analysis of circular cylindrical shells, the three most com-

mordy used are (in order of decreasing complexity): the theory of Flfigge n, the the-

ory of Sanders12,and the theoryof Donnel113,14(alsoknown as Donncll-Mushtari-

Vlasov or DMV theory).These theoriesdivergewidely in theirtreatmentof the shell

strain-displacementequationsand the expressionsfor the forceand moment resultants.

Fliigge'stheoryhas been criticizedon the grounds thatthe equationskeep the numer-

icallysmall terms of order h/Ra (h isthe shellthicknessand Ra isa radiusof cur-

vature).Recognitionof the complexity of FlUgge'sequationsand a desireto generate

a practicalsolutionto the problem of the buckling of a long thin-walledcylinderun-

der torsionalloading led L.H. Donnell to propose a relativelysimple setof equations

governing the response of circularcylindricalshells.These equationsare almost ex-

actlythe same as thosegoverning the response of a flatplateexcept for the presence

of a term W/R in the expression for the circumferential strain and a term Ny/R in the

equation expressing equilibrium of forces normal to the shell surface (IV is the radial

displacement,N_ isthe circumferentialstressresultant,and R isthe cylinderradius).

One important aspectof Donnell'sequationsisthatin the strain-displacementequations

and the expressionsforthe stressresultantsand stresscouples,the followingapproxi-

marion ismade

where z is a coordinatein the through-the-thicknessdirection.Thus, the through-the-
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thickness variation of the lengths of the circumferential fibers is neglected. Donnell

states in his paper that should any of the terms neglected in his theory be retained

these terms would be multiplied by either k(h/R) 2 or (l/n) 2, where h is the shell

thickness, k is a material property-dependent constant of order 1, and n is the number

of circumferential waves in the buckling mode shape. Thus it would appear that DMV

theory would be adequate for dfin shells with large n. Donner achieved excellent cor-

relation of his theory with experiments. Some insight as m why this was so was pro-

vided by the work of Marguerre is on shallow cylindrical panels. Published about the

same time as Dormell's paper, Marguerre's equations were strikingly similar. The sim-

ilarity in the equations governing the response of 2vL_'guerre's shallow panels and the

buckling of Donnell's cylinders, along with the good correlation Donnell achieved be-

tween his theoretically and experimentally determined buckling loads, can be attributed

to the fact that the cylinder, buckled into a configuration containing many circumfer-

ential waves, behaves like a series of shallow shells linked at node lines. The inher-

ent simplicity of DMV theory has made it the basis of many papers on the structural

analysis of cylindrical shells up to the present day. In order to avoid the deficiencies

of DMV theory without resorting to the complication of Fliigge's equations, Sander's

theory may be used. In Sander's theory, several terms involving the circumferential

displacement and its derivatives in the strain-displacement equations that are ignored in

DMV theory are .retain'ed. ..

In most practical applications, based On results published in the literature, use of

a theory more complicated tim DMV theory doesnot appear to be justified. In 1955,

Hoff 16 evaluated closed-form solutions for the linear bending response of isotropic cyl-

indrical shells b_ed on both Fl0gge and DMV theories. He showed that in the case

of the axisymmetric response both theories were precisely equivalent for all values of

geometrical parameters for which Flflgge's theory was valid. Dong, Pister and Taylor t7

extended this work to shells made of fiber composite laminates. Studying the linear,

axisymmetric bending response of generally laminated cylinders, they showed that re-

10



suits based on DMV theory were practically the same as those based on Fltigge's the-

ory provided that the laminate was constructed of laminae having ratios of fiber direc-

tion Young's moduli to transverse direction Young's moduli (EI/E 2) less than 1000.

Unfortunately, no evidence of a study comparing the nonlinear axisymmetric bending

response of cylindrical shells could be found in the literature. Most comparisons of

various nonlinear shell theories that appeared in the literature have been performed in

the context of solving the equations governing the stabilitll of prebuckling equilibrium

configurations.

Wu z8 compared the buckling loads from an assumed membrane prebuckled state

of laminated cylinders subject to combined loads of axial compression, torsion, and

lateral pressure calculated using DMV theory to those loads calculated using Flfigge's

theory and found that, when the cylinder buckled into five circumferential waves or

more, the difference in buckling loads predicted using the two theories was less than

3%. Most recently Simitses, eL al.19,a0 compared the limit point loads of metallic

and laminated cylindrical shells under axial compression calculated using a geometri-

cally nonlinear structural analysis based on DMV theory to those calculated based on

Sander's theory. In the special case of a shell made of a single layer of Boron/Epoxy

with all fibers running in the hoop direction, buckling loads calculated using DMV the-

ory were as much as 13% higher than those calculated using Sander's theory for cylin-

ders having L/R ratios as low as 2. However, for most practically laminated shells

they found negligible differences in the results based on the two theories for thin cyl-

indrical she_ whose postbuckled shapes contained four or more circumferentiaJ waves

and whose L/R ratios were less than five.
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2.2 Analysis of Unstiffened and Stiffened Cylindrical Shells

Efficient structural designs must be based on mathematical models which are real-

istic. This is especially true of designs generated in an automated structural optimiza-

tion algorithm since the algorithms tend to exploit the simplifications in the model.

Without adequate realism built into the model, large margins of safety may be nec-

essary to insure that neglect of strucu_ details does not result in unexpected failure

of the as-designed structure. The citations below are included to provide some justi-

fication for the level of detail included in structural analysis used in this study. This

discussion is not intended to be an exhaustive review of the literature pertaining to the

analysis of cylindrical shells

2.2.1 Unsfiffened Isotropic Cylindrical Shells

After publication of Donnell's paper in 1933 (Ref. 13), research focused on ap-

plying Donnell's equations to calculating buckling loads of isotropic cylinders sub-

ject to other types of loads, particularly axial compression, since it was felt that this

would yield insight into the response of the compression side of a bent aircraft fuse-

lage. Assuming a linear prebuclded equilibrium state, Seide and Weingarton 2_ showed

in 1961 that the bending buckling load of an isotropic cylinder was nearly the same as

the buckling load of the same cylinder under pure axial compression. Crate, eL al. 22

extended the experimental work of Donner in i946 to isotropic cylinders loaded in

torsion with internal pressure. They found that the pressure increased the buckling

load significantly and published an interaction formula applicable to design. It is well-

known that the correlation of the results of a classical buckling analysis to experimen-

tal results for cylinders subject to axial compression is too poor for such an analysis

to be used as the basis for design. It is generally believed that there are two major

reasons why rids is so, one pertaining to the existence of initial imperfections and the

other to the inconsistency of boundary conditions used in the prebuclding and buckling

analyses. Donnell and Wan 2s showed, using the results of a large deflection analysis,
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that small initial imperfections in the form of an initial stress-free radial displacement

could result in buckling loads which are much lower than the classical value. In 1963,

Koiter24 showed that initial imperfections in the shape of the classical axisymmetric

buckling mode,

Wo = _ cos(qox/R), (2.2.1.1)

could reduce the axial compression buckling load by as much as 40% when/_, the

imperfection amplitude, was as small as one-tenth of the shell wan thickness. In Eq.

(2.2.1.1), x is the axial coordinate of the cylinder, R is the radius of the cylinder,

q_ = 12(1 - v_)R2/h 2, u is Poisson's ratio, and h is the shell thickness. Koiter's

results also indicate that the axisymmetric buckling mode imperfection shape is the

most degrading shape of an possible harmonic, axisymmetric shapes. Hutchinson 2s

extended Koiter's work by adding one asymmetric term to Koiter's axisymmetric buck-

ling mode imperfection shape and calculating buckling loads of long cylinders subject

to axial compression and internal pressure using DMV theory and ignoring the effects

of the boundaries. Hutchinson concluded that internal pressure "ironed out" the asym-

metric imperfections but not the axisymmetric ones, resulting in the axisymmetric im-

perfection having the dominant effect. An explanation for the degrading effect of ax-

isymmetric imperfections can be found in the paper by Thurston 26. He points out that

while the axial stress resultant remains fairly constant up to buckling, the circumferen-

tial suess resultant increases in a nonlinear manner. There is a strong coupling between

this increasing circumferential stress resultant and asymmetric buckling modes which

triggers premature buckling compared to classical linear theory. The bending of the

shell wan with imperfections creates regions where the circumferential stress resultant

may be compressive, which is an additional destabilizing effect.

Without including the effects of initial geometric imperfections, Stein 2T performed

a theoretical buckling analysis from a geometrically nonlinear axisymmetric prebuck-

led state on a perfect cylinder under axial compression using DMV theory and showed

that maintenance of consistent boundary conditions in the prebuclding and the buck-
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ring analysescould resultin buckling loadswhich are as much as fiftypercentlower

than those predicted using classical theory. He also showed that the addition of in-

ternal pressure tended to raise the buckling load up to the classical value. Almroth 2s

added axisymmetric imperfectionsto Stein'sanalysisand allowed for elasticrestraint

at the shell boundaries. He evaluated imperfections that were nonperiodic functions of

the axial coordinate as well as those that were periodic functions and concluded that

the nonperiodic imperfectio_ generally resulted in less dramatic drops in the buckling

load. The work of Koiter, Stein, Almroth, and others led Tennyson, eL aL 2° to propose

abandoning the inefficient practice of designing cylindrical shells using empirically es-

timated buckling load reduction factors in favor of basing designs upon an analysis

of cylinders possessing axisymmeuic wall imperfections. They showed, through the-

oretical analyses and experiments, that the Koiter type of imperfection shape (see Eq.

(2.2.1.1)) with an amplitude equal to the root-mean-square of radial deviations from a

pre-determined ideal shape measured in the cylinder wall, could adequately account for

the effect of initial imperfections. They also included a two term asymmetric imperfec-

tion, similar to that of Hutchinson, in theft theoretical analysis and concluded that the

effect on the axial compression buckling load of the asymmetric term was relatively

small compared to the effect of the axisymxnetr]cc0mponent.

2.2.2 Unsfiffened Anisotropic Cylindrical Shells

As the state-of-the-an of the analysis of unstiffened isotropic cylinders advanced,

more and more attention began to focus on the behavior of cyfindr/cal shells made of

laminated fiber composite materials. Dong, Pister, and Taylor I_' and Ambartsumyan s°

published some of the earliest work in the area of stress analysis of these shells, the

former payi=ng particular attention to the influence of bending-stretching coupling of

the shell wall laminate on the response of the overall structure. The paper by Cheng

and Ho s1 presented the results of some of the earliest work performed in the area of

buckling of generally laminated cylindrical shells. They performed a classical type of
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analysis using a combination of Fliigge's theory for the governing differential equations

and DMV theory for the boundary conditions. Motivated by the work of Seide and

Weingarton in the area of bending buckling of isotropic cylinders, Holston 32 performed

a similar analysis on cylinders made of laminated composite materials. He used linear

anisotropic shell theory for the prebuclding analysis, ignoring the effects of boundary

conditions, and applied both Fliigge's theory and DMV theory to the stability problem.

He concluded that the bending/compression interaction diagram was linear and that the

buckling load of the cylinder under pure bending was very nearly equal to that of the

cylinder under pure axial compression, a result similar to the one obtained for isotropic

shells earlier (Ref. 21). Thus it appeared that the study of laminated cylinders under

axial compression could provide information applicable to the study of the bending of

a laminated composite cylindrical shelL

Card_3 studied the imperfection sensitivity of laminated cylinders subject to axial

compression with the goal of finding the winding angle (a) of a balanced :t:a lami-

nate configuration that yielded cylindrical shells with the lowest imperfection sensitiv-

ity. He used a geometrically nonlinear axisymmetric prebuclding analysis in order to

study the effects of prebuciding boundary conditions that were consistent with those

applied in the buckling analysis and concluded that for some laminate configurations

this consistent approach yielded buckling loads which were as much as 25% below

those calculated using classical theory. However, the results of the classical analysis

for other laminate configurations were extremely close to the results obtained from his

consistent analysis. The result of Card's buckling load and posthuclding coefficient

calculations (postbuclding coefficients are an estimate of the slope of the postbuck-

led load-displacement curve at the bifurcation point, and are used as a measure of im-

perfection sensitivity) showed that a cylinder having a shell wall angle a equal to 45

degrees had the lowest imperfection sensitivity; furthermore, he concluded that the lam-

inate configurations yielding the highest buckling loads generally were also the most

imperfection sensitive. The results of a series of experiments qualitatively verified the
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theoretical predictions, indicating that the disparity between buckling tests and theo-

retical predictions for anisotropic shells was comparable to that of isotropic shells for

some laminates.

Work such as Card's led Tennyson, et al.s4 to include the effects of an axisym-

metric imperfection shape in their theoretical buckling analysis. They derived the clas-

sical axisymmetric mode shape for a generally laminated cylindrical shell, and used

this as the imperfection shape in the analysis of cylinders with a [0, 0,-0] laminate.

Including imperfections with araplimdes as small as ten percent of the cylinder wall

thickness in the analysis, they calculated buckling loads which were as much as 60%

lower than the buckling loads calculated using the classical approach. Plotting the

buckling load versus 0, with the imperfection amplitude as a parameter, they also de-

monstrated that the presence of initial imperfections negated the theoretical buckling

load increase, resulting from a judicious choice of 0 predicted based on classical the-

ory. Buckling loads for imperfect cyfinders proved to be insensitive to the lamination

angle 0 for the type of laminate under consideration. This correlated with Card's ob-

servation that the laminates of perfect cylinders that resulted in the highest buckling

loads also resulted in structures having the highest imperfection sensitivity. Booton 35

extended Tennyson's work to study cylindrical shells under combined loads. He em-

ployed DMV theory, axisymmetric nonlinear prebuckling, an axisymmetric initial ge-

ometric imperfection of the same type as that used earlier by Tennyson, eL alY, and

clamped boundary conditions in the prebuckling analysis consistent with those of the

buckling analysis. The purpose of the study was to develop a general set of buckling

interaction diagrams for various load combinations for use in the design of laminated

cylinders. Booton found that the interaction diagrams could vary dramatically from

one stacking sequence to another; furthermore, he found that in a few special cases

the interaction diagram was convex toward the origin, rendering the commonly used

approach of approximating the interaction diagrams with straight lines nonconserva-

five. Perhaps more significant were the results of a series of experiments performed

16



as part of the study. He obtained excellent theoretical/experimental correlation, using

his theoretical analysis to predict buckling loads which were typically within 10% of

the corresponding experimentally observed values. Jones and Hermeman 3s applied an

analysis similar to Stein's 2T to study the effect of a geometrically nonlinear prebuck-

led state with consistent boundary conditions only (no imperfections included) on the

buckling loads of cross-ply laminated cylinders subject to axial compression or lateral

pressure (not in combination). They concluded that the effects were negligible for that

particular family of laminates. In 1985 Simitses, et. al.3T published the results of their

nonlinear structural analysis of simply supported four and six ply laminated cylindri-

cal shells loaded in torsion and axial compression. They discovered that the lamina

stacking sequence had a pronounced effect on the magnitude of the limit load and the

imperfection sensitivity. The samples were more imperfection sensitive under axial

compression than under torsion; furthermore, the laminates with the higher limit point

loads were also more imperfection sensitive.

2.2.3 Stiffened Isotropic Cylindrical Shells

What is geuerally regarded as the earliest work in the theoretical analysis of stiff-

ened metal cylinders was published by van tier Neut ss in 1947. Van der Neut calcu-

lated theoretical buckling loads of stiffened cylinders under axial compression using

two different mathematical models. In the first model he smeared the sfiffnesses of the

rings into an equivalent orthotropic shell layer while in the second model he treated

the rings as discrete curved beams. The stiffnesses of the longitudinal stiffeners were

smeared in both models. Comparing the theoretical buckling loads calculated using

both models, van der Neut concluded that the average number of rings lying within one

half-wave length of the buckled mode shape must be greater than 2 for the buckling

loads of the model with the smeared rings to be approximately the same as the corre-

sponding buckling loads of the model with discrete rings. In many applications, such

a close ring spacing is not practical. By including stiffener centroid eccentricity in his
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model, van tier Neut showed that placing the centroid at the shell wall middle surface

in the theoretical analysis could result in large errors in the buckling load if the cen-

troid of the stiffeners in the actual structure was offset from this middle surface. He

also postulated that, due to the large number of circumferential waves in the buckle

pattern, a cylinder under axial compression would possess almost the same buckling

load as a cylinder subject to bending.

In 1950 Stein, et. al. s_ published the results of a theoretical and experimental

study of simply supported ring-stiffened cylindrical shells under torsional loading. Us-

ing DMV theory to estimate the panel buckling loads in his analysis (assuming the

rings possessed no torsional stiffness), he achieved good correlation (85%) with the

experiments. Stein noted that the increasing the size of the rings tended to drive the

buckling load up until the buckled mode shape possessed node points at the ring loca-

tions, noting that rings effectively resisted the formation of the diagonal buckles asso-

ciated with torsional buckling. Block 4° conducted a theoretical study of similar ring-

stiffened cylindrical shells subject to axial compression. He modeled the rings as dis-

crete beam elements having centroids coincident with the shell wall midplane. Block

concluded that use of such a detailed mathematical model was not justified; model-

ing the region between rings as an unstiffened, simply supported cylinder for panel

buckling calculations and using the smeared technique fo-r general buckling calculations

produced adequate results for the particular cases studied. Haftka and Singer 41 also

modeled the rings as discrete beam elements in stud_g the buckling of ring-stiffened

cylinders subject to axial compression and pressure loadings. In the axial compression

case, they noted that unless the rings were extremely weak and their spacing extremely

small panel buckling was the critical buckling mode; furthermore, adding rings to the

unstiffened shell had a very small effect on _ buckling load. This is because the

buckled mode shapes of such structures typically possess many axial waves so that, un-

less the ring spacing is small, the rings tend to lie on node lines of the buckled wave-

form. Baruch and Singer 42, using the smeared technique to calculate general buckling
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loadsonly, studied stiffened cylindrical shells under external pressure loads. As van

der Neut had concluded for such shells under axial compression, they concluded that it

was very important to include stiffener eccentricity in the mathematical model. Block,

Card, and Mikulus 43 drew the same conclusion for cylindrical shells under combined

axial compression and pressure using the smeared technique. Still focusing on gen-

eral instability only, Hutchinson and Amazigo _t calculated postbuckling coefficients for

stiffened cylindrical shells loaded in axial compression or external pressure using DMV

theory and the smeared technique. They demonstrated that cylinders subject to axial

compression stiffened with internal stringers only had near zero imperfection sensitiv-

ity while the same cylinders with internal rings only exhibited substantial imperfection

sensitivity.

Bushnell45 addressedthe issueof how much detailto includein the mathemat-

icalmodel used to calculatebuckling loads of stiffenedshellsof revolution.Using

BOSOR44e, a very accuratecomputer program based on a branched shellmathemat-

icalmodel, he showed thattheoreticalbuckling loads and vibrationfrequenciescould

be unexpectedly sensitive to modeling details such as prestress deformations and out-

of-plane stiffnesses of rings. He also noted that rings and stringers could exhibit sig-

nificant prebuckling deformation leading to significantly unconservative buckling load

estimates based on mathematical models which fail to account for this deformation.

2.2.4 Stiffened AnisotropicCylindricalShells

Many analysiscodes (such as BOSOR4) now includethe capabilityof analyzing

laminated composite stiffenedshellsas well.asisotropicstiffenedshells;however, the

state-of-the-artof the analysisof thesestiffenedshellsisnot as advanced as thatof

isotropicshells.The paper by JonesIT presentsthe resultsof generalbuckling load cal-

culationsfor fiber composite cylinders with composite stiffeners subject to hydrostatic

pressure. The goal of this study was to observe the effects of stiffener eccencicity and

the bending-membrane coupling induced by an unsymmetrically laminated shell wall.
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Jones used the smeared technique and a classical buckling analysis based on DMV the-

ory in his work assuming a membrane prebuckled state and ignored the effect of mate-

rial bending and twisting coupling. He presented a single example which indicated

that the axial compression buckling load was sensitive to the degree of membrane-

bending coupling exhibited by the shell wall laminate. In 1975, Jones and Morgan 4s

recognized that composite materials tend to possess different Young's Moduli in ten-

sion than in compression and modified Jones's analysis to include this phenomenon.

They studied cylinders subjected to various combinations of axial loading and lateral

pressure and found that the effect of the bllinear stress-strain relation on the buckling

load was small for most practical materials

Wang and Hsu 49 studied the state of stress in prebucHed stiffened laminated cyl-

indrical shells subject to combinations of internal pressure, temperature change, and

axial load using a mathematical model with _te beam elements representing the

stiffeners. A few examples are included to demonstrate the capability of their analy-

sis. One important detail shown on the charts that summarize the results of these ex-

amples is the existence of high strain gradients in the cylinder skin near the stiffening

elements.

2.2.5 Stresses and Strains Adjacent To Stiffeners

As mentioned in section 1.3.2, proper characterization of the stres_s in areas of

high strain gr',__'ents may be important to the design of laminated composite structures.

In the case of the composite ring-stiffened cylinder, the ring/skin interface is one such

area. In the prebuclded equilibrium configuration, the rings must not separate from

the skin. Since the thin shell may be loaded by a combination of tangential loads and

normal pressure loads, a geometrically nonlinear prebuclding analysis is justified in

order to accurately predict forces and bending moments at the ring/skin interface. It is

assumed in the present study that the rings are adhesively bonded to the skin.

Wang and Biggers so developed an analysis code to be used in the design of flat
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panelswith adhesivelybondedstiffeners.The stiffenersof suchpanelstendto sep-

aratefrom the skin when the structure is posthuckled and/or subject to normal pres-

sure loads. To quantify this phenomenon, Wang and Biggers modeled the stiffener at-

tachment flange and attached skin as orthotropic plates whose deformations are cou-

pled through the presence of a thin, isotropic adhesive bond between them. They as-

sumed that the transverse shear and normal stresses in the bond were constant through

the thickness and that any tangential stresses could be neglected. The stiffener web

and supporting skin were modeled as distributed springs. The results of this analy-

sis showed that while the bond shear suesse_ (r=, and 7"y,) were more or less uni-

form across the step in thickness at the skin/flange interface, the bond normal stress

(a=x) peaked sharply in this area. A narrow attachment flange resulted in a better de-

sign since wide flanges resulted in higher bond shear O'z= ) stresses; furthermore, high

ratiosof flangethicknessto skin thicknessresultedin higherbond stressesand thus

poorerdesigns. Wang and Biggers alsoshowed thatchanging the lamina stackingse-

quence of both the flangeand the skin could drasticallyaffectthe separationstresses.

In one case,switchinga zero and ninetydegree ply withinthe stiffenerflangelaminate

resultedina forty-twopercentincreasein thesestresses.Tsa/s_presentsan in-depth

analyticaland experimentalstudy of the problem of stiffenerpull-offin curved,post-

buckled panels with co-cured stiffenersl He worked the problem using both a "maxi-

mum allowable pull-off strength" approach and a fracture mechanics approach to es-

timate the maximum strength of the specimens used in the experiments. Based on

his experimental results, Tsai determined that the strain energy release rate calculated

using the fracture mechanics approach was the conu'olling parameter for initiation of

skin/stiffener separation and that a failure criterion based on this quantity could be used

to determine skin-stiffener interface configurations resulting in maximum improvement

in pull-off strength.

Hyer, et. al.s2 performed a theoretical and experimental study of flat, stiffened

panels loaded by normal pressure in order to evaluate the effects of stiffener geometry

21



andskin elasticpropertieson straindistributionsin the skin/stiffenerinterface region.

They observed that a significant amount of bending of the stiffener attachment flange

and adjacent skin occurred due to pillowing of the skin and that the transition from

low to high strains occurred in a very narrow region. They also found that geometri-

cally nonlinear effects were important at pressures as low as 0.1 arm. and concluded

that the stress state in the region was truly three dimensional. Decreasing the ratio of

the bending stiffness of the stiffener attachment flange to that of the panel skin resulted

in attenuation of the stresses in this three dimensional stress state without significantly

affecting the global panel response since stiffener web height affected this response

to a much greater degree. They also found that the addition of a small amount of in-

plane biaxial tension load to the panel resulted in attenuation of the strain gradients.

Cohen and Hyer s3 undertook the difficult task of attempting to rigorously characterize

the complex three-dimensional stress state in the comer region where the skin and stiff-

ener meet. They discovered that a stress singularity existed in this region and quanti-

fied its severity by calculating a stress intensity factor. By tapering the flange to meet

the skin, they found that the magnitude of the stress intensity factor could be substan-

tially lowered.

Boitnott s4 studied, both theoretically and experimentally, the stress state at the

meridional edges of a long cylindrical panel subject to internal pressure using varying

degrees of fixity at these edges in order to approximate the skin of an aircraft fuse-

lage adjacent to a stringer. He employed nonlinear DMV theory to characterize the

high bending gradients generated by pillowing of the skin under pressure at a sup-

ported edge. The high bending gradients resulted in severe local stress gradients at

the supported edge which Boitnott concluded could only be accurately quantified us-

ing a geometrically nonlinear analysis. Boitnott also demonstrated that changes in the

lamina stacking sequence could strongly influence the character of these stress gradi-

ents. The results of his experiments showed that laminated panels tended to fail earlier

than me_ panels Of _ me thickness since local yielding of the metal provided a
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measureof strainrelief near the supported edge.
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2.3 Design of Unstiffened and Stiffened Cylindrical Shells

Past work completed in the area of design of stiffened cylindrical shell structur_

included results generated by either systematically varying different design parameters

or by applying the techniques of structural optimization. There has not been a large

amount of research devoted to the design of unstiffened, isotropic, circular cylindrical

shells since only a single design variable, the shell wall thickness, is typically involved.

Hyman and Lucas 55 studied buckling load maximization for designs where the wall

thickness could vary along the length of the cylinder. They showed that substantial

increases in structural efficiency could be re_ using this technique. Most of the

research in the area of _um weight design of isotropic cylindrical shell su-ucmre_

has been devoted to such structures stiffened by rings and/or stringers.

2.3.1 Stiffened Isotropic Cylindrical Shells

As the state-of-the art of analyzing stiffened cylindrical shells advanced in the

early 1960's, interest began to shift toward exploiting this advancement in order to

develop more efficient structural designs. Most of the results generated in this time

period were in the form of parametric studies which appeared at the end of papers pri-

marily devoted to analysis. For example, in their paper on the analysis of stiffened

"cylindrical shells subject to external pressure loads, Baruch and Singer 42 showed that

locating stringers on the external surface of the shell wall resulted in higher general

buckling loads than if the stringers were located on the internal surface. Block. Card

and Mikulus 43 showed that, for stiffened cylinders under axial compression, both ex-

ternal stringers and external rings resulted in the highest general buckling loads. Con-

sidering that both of these observations were based on analyses employing the smeared

stiffener technique, they could have ramifications in the design of unstiffened lami-

nated composite cylinders; for example, a smeared set of stringers might approximate

a thick layer of zero degree plies. In 1966, Singer and Baruch 5e presented the results

of a large number of trade studies. They showed that while external stringers resulted
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in highergeneralbucklingloads,theyalsomadethe structure more imperfection sen-

sitive. Perhaps their most important observation was that given an optimally designed

structure, weight savings for a given load were less substantial than gains in the size

of the general buckling loads for a given weight. Bums sT, analyzing stiffened cylin-

ders subject m axial compression using a classical buckling analysis and the smeared

technique, showed that use of both stringers and rings resulted in more efficient designs

than stringers alone and that small amounts of internal pressure resulted in substantially

lighter weight designs. This weight savings was so substantial that he proposed devel-

opment of a fail-safe mechanism for an aircraft's fuselage which prestresses the rings

to maintain skin hoop tension in the event of sudden cabin depressufization.

In the late 1960's designs based on parametric studies, such as Burns's, began

to give way to designs based on systematic synthesis. Credit for the first publication

of this type is generally given to Kicher 5s. Schmit, Morrow, and Kicher _9 extended

Kicher's early work, using the interior penalty function SUMT to design stiffened

cylinders subjected to axial compression and lateral pressure. They used seven de-

sign variables (such as skin thickness, stiffener segment thicknesses, an stiffener seg-

ment lengths) and considered eleven separate failure modes (including local, panel,

and general buckling) using classical buckling analyses and the smeared technique for

the panel and general buckling analyses and classical fiat plate buckling analyses for

the individual stiffener segments, assuming they were simply supported at their edges.

They concluded that minimum weight designs possessed internal rings and internal

stringers, that use of the interior penalty function was effective, that consideration of

multiple load conditions was important, that minimum gage design constraints (usually

based on manufacturing considerations) resulted in substantial weight penalties, and

that relative minima existed in the design space.

Simitses and Ungbhakom e° and S'traitses and Aswani el developed optimum de-

signs using an approach that was different than the approach of Schmit, Morrow, and

Kicher. They performed the design algorithm in two steps, minimizing the total weight
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of stiffened cylinders subject to a single general instability equality constraint in the

first step, generating sets of design curves, then using these curves in the second step

to determine a final design satisfying all other constraints. Results of these studies

showed that the extensional stiffness of the rings tended to be more important than

bending stiffness as a design parameter while the bending stiffness of the stringers

tended to be more important than the str_ger extensional stiffness, leading to an oF"

fimum design consisting of rings of rectangular cross section and stringers of T shaped

cross section. The designs were not unique, in general and alternative optima existed.

Simitses and Girle2,e3 employed this two-step design method in designing stiffened

cylinders subject to combined loads with torsion included for the first time. They were

careful to impose an upper bound on the ring spacing in order to justify smearing the

rings in the general buckling calculations. In some cases, this constraint resulted in

a substantial weight penalty. Other results included the observation that the addition

of torsion resulted in heavier ring designs and tighter ring spacings with no substan-

tial effect on stringer designs, that relative and alternative minima existed in the de-

sign space, and that stiffening in both directions resulted in the most efficient structure.

Simitses and Sheinman 64 studied the imperfection sensitivity of optimum designs of

perfect cylinders. They concluded that accounting for initial imperfections was essen-

tial to the development of reliable optimum designs.

A greater proportion of work in shell design is being devoted to development

of meihodologies that are more fully automated than those used by $imitses and his

colleagues. Bronwicki, et. aLes applied an extended interior SUIVlT and a first order

method using finite difference gradients for performing the unconstrained minimization,

to the problem of developing designs of ring-stiffe_ cylinders subject to hydrostatic

pressure. They chose maximization of the separation of the two lowest vibration fre-

quencies as the objective function and used the smeared technique in their analysis.

They also imposed buckling constraints based on their nonlinear vibration analysis by

requiring a positive lower bound on the fundamental frequency. In many cases the op-
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fimization failed to converge. Pappas e6'6_' observed that Bronwicki's gradient-based

optimization algorithm failed to address the possible occurrence of mode switching.

Mode switching can occur when a move made to a new point in the design space,

while increasing the separation of the frequencies corresponding to the first two modes

of the original design, may in fact result in a decrease in the separation of the frequen-

cies corresponding to the first and third modes. If the second mode frequency of one

design iteration corresponds to the third mode frequency of the previous iteration,

mode switching has occuned. A similar problem can arise when attempting to max-

imize the lowest frequency. Pappas proposed two possible solutions to this problem:

either continue using the first order optimization algorithm with added constraints to

enforce separation of the higher vibration modes, or proceed as before using an op-

timization algorithm that does not rely on derivative information to determine search

directions in the design space. Pappas actually combined these two proposed solutions,

relying on direct search until the algorithm failed to find better designs, then using the

method of feasible directions, a first order method, to perform a local search in the

neighborhood of the best design found by direct search accounting for all critical and

near critical vibration modes in the constraint seL Pappas showed that his technique

could find optimum designs in the cases where Bronwicki's algorithm failed.

Kunoo and yang6S based their study of stiffened cylinder optimization on a more

robust analysis in which they modeled some of the stiffeners as discrete beam ele-

ments. Such an analysis, they pointed out, tended to generate large order algebraic

eigenvalue problems which remained prohibitively expensive to solve within a design

optimization algorithm even after application of an efficient solution scheme; hence,

they chose to use the simple one-term solutions from classical buckling theory and

the smeared technique during the progress of the design optimization, then employ

a more refined analysis to check the optimum design. Pappas and Moradi 69 pointed

out that Kunoo and Yang "oddly" neglected to mention any problems associated with

closely spaced eigenvalues. Studying the design of ring-stiffened cylinders subject to
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external pressure loads, they showed that the proce.m tended to generate a large num-

her of nearly simultaneous buckling modes. The significance of this observation was

that it became necessary to examine a large number of buckling modes and establish

constraints for all the ones that were critical and near critical to avoid violating one

constraint while moving to simultaneously lighten the structure and avoid violating an-

other constraint. In a more recent study of optimum designs of stiffened cylinders un-

der axial compression, Qiu _'° used a procedure similar to that of Schmit, Morrow, and

Kicher _g, but simulated a postbuckled cylinder skin in the general and panel buckling

load calculations by using a re_tuced modulus of elasticity for the skin. Qiu concluded

that allowance for a posthuclded skin had a dramatic affect on the optimum designs.

2.3.2 Unstiffened Anisotropic Cylindrical Shells

The freedom to choose a lamination scheme makes the design of unstiffened lam-

inated cylinders much more interesting than the design of unstiffened isotropic cylin-

ders. While studying the classical buckling response of three layer laminated cylin-

drical shells (ignoring any bending-twisting or extension-twisting coupling exhibited

by the laminate) subject to axial compression and internal pressure, Tasi _q performed

efficiency studies which showed that the most efficient laminates were unsymmetric,

with the layers possessing the highest axial stiffness located nearest the outside surface

of the shell. This is similar to the efficiency of stiffened metal cylinders with exter-

nal stringers. Simitses, eL al. s7 drew similar conclusions. The late 1970's through the

present day have seen a tremendous increase in the application of formal op_zation

techniques to the design of unstiffened laminated cylindrical shells. Hirano TM based his

designs on classical buckling of simply supported cylinders under axial compression

using :t:a type laminates (see section 2.2.2) ignoring, as Tasi did, the presence of any

bending-twisting or extension-twisting coupling. Hirano posed the design problem as

an unconstrained maximization of the buckling load and used Powell's method (a zero-

order method) to perform the optimization. The existence of many relative minima in
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thedesignspace required restarts from several initial points to locate the global opti-

mum. The complexity of the problem made it impossible to determine what was truly

the best design.

Nshanian and Pappas T3 conducted a very thorough study of the optimum design

of symmetrically laminated cylindrical shells subjected to axial compression and lateral

pressure. Their goal was to find a through-the-thickness piecewise constant or piece-

wise linear distribution of lamina orientation angles that would maximize the classi-

cal buckling load and lowest frequency of natural vibration, using the feasible direc-

tions optimization algorithm. The results of the study, obtained with a large number

of computer runs, indicated that mode coalescence occurred for both the buckling and

the vibration problem. For the buckling case, optimum designs possessed as many as

twenty different modes with associated critical loads within three percent of each other.

In some cases, when the authors considered too few buckling modes, the optimization

failed to converge. This again demonstrated the need for consideration of higher buck-

ling modes in the design algorithm. The main conclusions of the study were that the

increase in buckling loads associated with the use of optimization was substantial and

that the piecewise linear distribution of orientation angles through-the-thickness pro-

duced designs with higher buckling loads overall than those designs produced using

the piecewise constant distribution Onoda 7¢ extended the work of Nshanian and Pap-

pas. providing complete freedom in the selection of the ply angle distribution through

the thickness. Using direct search, with lamination parameters as design variables in-

stead of lamina fiber orientation angles, Onoda concluded that shear-extension coupling

should be negligible for the optimal laminate configurations and that a large number

of alternative optima exist corresponding to both symmetric and asymmetric laminates.

One of these optima consisted of an infinite number of infinitely thin layers arranged

so that the shell was quasi-isotropic in its surface and quasi-homogeneous through its

thickness. Sun 7s applied a different approach to solve the same problem as Onoda

and showed this new approach to be superior to the direct search technique employed

29



by Onode. Using a technique similar to that employed by Pappas 6s'67 and described

in section 2.3A, he first performed a random search of the entire design space to get

a good initial point for a systematic search for the optimum design. He then applied

Powelrs method to converge on the optimum. Using several different initial points for

the systematic search, Sun found his method generated global optima that were practi-

cally reproducible. Most recently, Hu and Wang 7s demonstrated the feasibility of using

a commercial finite element code and the sequential linear programming technique to

determine optimum lamina fiber orientation angles and hole geometries in shells with

cutouts which maximize the buckling load of the shell from a linear prebuclded state.

2.3.3 Stiffened Anisotropic Cylindrical Shells

Most of the work in the area of design of stiffened laminated composite structure

has been devoted to the study of stiffened flat and cylindrical panels. As mentioned in

Chapter 1, PANDA s and PANDA24 represent the state-of-the-art in such design prob-

lems. Much of the information gleaned from the study of the optimum design of stiff-

ened metal cylinders is applicable to cylinders made of laminated composites as well;

however, the additional number of design variables and constraints poss_le in a stiff-

ened laminated cylinder could result in a problem that would approach the capacity

of even some of todays most powerful computers. This is not to say that examples of

such designs studies are absent from the literature. As early as 1969, Chao 77' devel-

oped a code to produce minimum weight designs of orthogonally stiffened laminated

composite cylinders using an analysis and a SUMT optimization algorithm very sim-

ilar to that of Schmit, Morrow, and Kicher 59 . The code is quite general, admitting

combined axial compression, pressure, and torsional loads and including many dif-

ferent failure modes; however, the author fails to address such issues as the effects of

anisotropy, mode coalescence and closely spaced buckling eigenvalues in the optimum

designs. Example cases presented in the document served more to demonstrate the ca-

pabilities of the code than to report design trends; however, Chao did elaborate on his
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discovery of alternative optima in the design space. He showed that when alternative

optima existed the ply angles resulting in minimum weight generally did not result in a

maximum buckling load. He reasoned that since the total weight was not a function of

the layer orientation angles, derivatives of the buckling constraints with respect to these

angles should be weighted in order to drive the design to the alternative optima having

the higher buckling loads. Chao implemented this in his code with some success.

Agarwal TM studied the design of cylinders loaded in axial compression only. In

addition to tmstitfened laminated cylinders, Agarwal considered cylinders with hat-

shaped longitudinal stiffeners and cylinders made of honeycomb sandwich construction.

He considered all local stiffener buckling, panel buckling, general buckling and buck-

ling of the shell skin bounded by the longitudinal and circumferential stiffeners, based

on classical analyses, as consu'aints on the design along with a maximum strain con-

straint; however, his analysis ignored all but the orthotropic terms in the laminate con-

stitutive relations. He employed a commercially available code based on a zero order

method to perform the optimization. Aware of the limitations of his analysis, Agarwal

checked his optimum designs using BOSOR446. For the ring and stringer configura-

tions he found that the branched shell code calculated buckling loads thirty percent

lower than his code's due to considerable distortion of the stringers in the prebuckled

state (ring distortion was small). Modifying his code by reducing the torsional stiffness

of the stringers solved the problem. In addition to this observation, Agarwal concluded

that use of graphite-epoxy composite resulted in designs which were up to fifty percent

lighter than comparable aluminum designs, that minimum gage constraints resulted in

a substantial weight penalty, and that the honeycomb sandwich cylinder with graphite-

epoxy face sheets was the lightest design.

Hansen and Tennyson T9 presented the results of a series of parametric design stud-

ies in which both the axial compression buckling load and imperfection sensitivity of

laminated unstiffened and stiffened cylinders were evaluated both theoretically, using

analyses similar to those presented by Tennyson, eL al.3¢ and Booton 3s, and experi-
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mentally. Goodcorrelationbetweentheoryandexperimentwasfound in mostcases.

Their major conclusions were that it was possible to increase the critical buckling load

of laminated composite cylinders very significantly through a judicious choice of lam-

inate configuration and, in regards to the results of Card 33 and Tennyson _s noting the

increased imperfection sensitivity of optimum configurations, that it was indeed pos-

sible to create designs with increased buckling capability without paying too severe a

penalty in increased imperfection sensitivity.

2.3.4 Shell Design Based On A Geometrically Nonlinear Analysis

All of the work in the field of optimum design of cylindrical shells subject to

buckling constraints cited up to this point has been based on "classical" buckling anal-

yses which are based on the assumption of a membrane prebuclded state of stress. For

short cylinders, cylinders with shell wall laminates exhibiting bending-stretching cou-

pling, cylinders loaded with normal pressure, or cylinders exhibiting any combination

of these traits, this is a highly questionable practice. The degrading effects of initial

geometric imperfections makes the assumption of a membrane prebuclded equilibrium

state even more suspect. With access to greater computational power today, more re-

searchers in the area Of optimum shell design are basing their methods on analyses

which include some degree of geometric nonlinearity in the prebucided state. Narus-

berg, et. aL so used a geometrically nonlinear analysis to determine limit point loads in

developing optimum designs of symmetrically laminated imperfect cylindrical shells

subjected to external hydrostatic pressure loads. Specifying the fiber orientation angles

of the various lamina from which the shell was to be constructed, they determined the

distribution of lamina thicknesses that resulted in a minimum weight shell using the

random search procedure. They also performed the optimization using a classical buck-

ling analysis and compared the results to corresponding optimum designs developed

using the nonlinear analysis. The results of this comparison were that the difference in

optimum weight of the cylinders based on buckling loads calculated based on an as-
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sumedmembraneprebuckled state versus those based on limit point loads calculated

using a geometrically nonlinear analysis was small 0%); however, the resulting opti-

mum designs were very different. The designs based on the nonlinear analysis tended

to exhibit more stable postbuckled paths in the postbuckled state. The work of Nares-

berg, eL al. was published in the Soviet literature. A good survey of East European

literaturedevoted to optimaldesignof structuresunder stabilityconstraintsappears in

Ref. 81.

Sun and Hansen s_ based their design studies on the theoretical buckling analysis

published by Booton 3s. They performed an unconstrained maximization of the buck-

ling load on cylinders of fixed weight having lamina fiber orientation angles as design

variables. While the analysis could account for axisymmetric imperfections in the form

of the classicalaxisymmetric bucklingmode,Sun and Hansen did not includeimper-

fectionsin the design process since a priori knowledge of a root-mean-squared imper-

fection amplitude was not available. However, they did calculate postbuckling coef-

ficients in order to assess the imperfection sensitivity of the optimum designs. They

employed the two step algorithm described by Sun 7s in the optimization, using hun-

dreds of runs in the random search, and found that the optimum laminate designs were

both unbalanced and unsymmetric. It appeared that such designs tended to exhibit the

highest flexural rigidity along the axis of principle compression; however, the designs

were suspect since they were based on the theoretical buckling analysis of a perfect

cylinder. This suspicion led to a series of experiments on cylinders with measured im-

perfections that seemed to confirm the higher buckling loads of the optimized cylinders

over baseline designs. With the measured imperfections included in the analysis, exper-

imental/theoretical correlation was good, with the experimentally determined buckling

loads being within5 to 15% of the theoreticalvaluesdepending on the imposed load-

ing. Based on the postbucldingcoefficientcalculations,Sun and Hansen found thatthe

optimizationtended to resultin significantchanges in the imperfectionsensitivityof

the final designs with respect to the initial designs.
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Very recendy Ringertz s3 performed the structural optimization of isotropic stiff-

cried shells based on a geometrically nonlinear finite element analysis using a SUMT.

He presented two novel approaches to the problem. First, buckling constraints that do

not rely on the solution of a nonlinear eigenvalue problem are imposed to insure that

the Hessian of the strain energy remains positive definite. Second, instead of solving

the nonlinear equilibrium equations directly, the displacements and rotations which

describe the deformation are added to the set of design variables and the equilibrium

equations are added as a set of equality constraints. Ringertz presents three example

problems demonsu'ating the code's usefulness.
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2.4 Summary

Based on a review of past work performed in the area of stiffened and unsfiffened

cylindrical shell analysis and design, the following observations can be made

1. DMV theory yields refiable estimates of the axisymmetric prebuckled

response and buckling loads provided the degree of orthotropy of the

layers of the shell laminate is not too severe and the shell is not

too long (L/R less than 5) so that a large number (at least 5) of

circumferential waves comprise the buckled mode shape. It will be

assumed throughout this study that these conditions are satisfied

to a reasonable degree. Any results generated that exhibit a

substantial deviation from these conditions will be reported with

the appropriate caveat.

2. A geometricatly nonlinear analysis of the prebuckled sheU, including the

effects of initial geometric imperfections, is warranted.

3. Accurate mathematical models that account for cross sectional distortion

of the stiffeners in the prebuckled equilibrium state should be employed,

particularly when optimum design configurations are being sought.

4. Pillowing of the shell skin under pressure results in highly localized

regions of high strains near the stiffeners. In-plane compressive loads

may exacerbate this effect. Quantification of the stresses and strains

in these regions is particularly important in the case of shells made of

fiber composite materials due to the brittle nature and low transverse

strength exhibited by these materials.

5. The optimal design problem is complicated by the presence of many relative and

alternative optima in the design space as well as the occurrence of mode

coalescence and mode switching during the design process.
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Chapter 3

PROBLEM STATEMENT, ASSUMFHONS AND GOVERNING EQUATIONS

3.1 Problem Statement

For the ring-stiffened cylinder of Fig. 1.1.1, the problem to be addressed in this

study can be stated as follows:

Minimize: Total structur, d weight

Such that:

I. The buckling load of the structure is larger than the applied load.

2. Stresses remain below material allowable strengths.

3. Design variables remain within imposed limits.

The behavioral constraints (items 1 and 2) are evaluated using a structural analysis

based on the following analytical model.

3.2 Analytical Model and Assumptions

The stiffened cylindrical shell of Fig. 1.1.1 is assumed to be clamped at both ends

and loaded by an axisymmetric combination of axial compression, torsion, and pres-

sure. In order to simplify the analysis, the behavioral constraints indicated in section

3.1 are evaluated based on analytical models developed under the assumption that all

response quantifies in the prebuckled equilibrium state ate axisymmetric. This greatly

simplifies the governing equations and makes the problem more tractable. The cylinder

and ring attachment flanges are modeled as thin cylindrical shell segments constructed

of layers of material laminated as shown in Fig. 3.2.1. Note that for purposes of calcu-

lating theoretical buckling loads of the ring-stiffened cylinder, the ring flange, adhesive

bond and attached skin are treated as a single cylindrical shell segment. The ring webs

are modeled as thin laminated annular plates, with free inboard edges, made of layers

of material monoclinic with respect to the plane of the plate defined in a cylindrical

coordinate system as shown in Fig. 3.2.2. Rings in the form of steps in thickness and
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inverted T-shaped sections are considered. The cylindrical shell and annular plate seg-

ments are joined mathematically using conditions of compatibility of deformation and

equilibrium at each junction where segments are connected. A typical cross-section of

the ring-stiffened shell appears in Fig. 3.2.3.

Except at the point where the shell skin meets the edge of a ring flange, The ma-

thematical model used in the calculation of the theoretical buckling load (referred to

as the "global" model) can also be used to provide reasonable estimates of the stresses

and strains in the various structural segments. Modeling the segment formed by the

frame attachment flange and attached skin as a single shell segment, and forcing a

jump discontinuity in shell material properties at the point where the skin and flange

meet does not provide the free edge boundary condition which exists at the end of

the ring attachment flange. While it will be assumed here that in-plane (tangential)

stresses in the skin in this region can be adequately estimated using the global model,

the through-the-thickness normal and transverse shearing stresses occurring there can

only be reasonably estimated using a more refined local model These normal and

shear stresses are known to lead to strength failure in the flange/skin interface aw_

The approach taken here is to apply the stress resultants and stress couples in the skin

and ring web from the global model, evaluated where they intersect the ring flange, to

a more detailed model that approximates the ring flange / adhesive / attached skin com-

bination as two concentric cylindrical shells connected by a set of equivalent normal

and shear springs. This results in having to solve a system of differential equations to

determine the response of the flange / skin segment that is more complex than the sin-

gle differential equation governing the response of the flange/skin shell segment in the

global model.

The governing equations are based on the kinematic assumptions of DMV theory

for shells and yon _ theory for plates. Justification for using these theories is

provided in Chapter 2. It is tacitly assumed here that the conditions necessary for cor-

rect implementation of these theories in both the buckling analyses and the analysis of
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the prebuckled equilibrium state do indeed exisL The main assumptions are:

1. Normals to the undeformed reference surface (skin middle surface) remain straight

and normal to the deformed middle surface and are inextensional.

2. Transverse normal suess is small compared to other normal suess components and

may be neglected in the constitutive equations.

3. The shell (plate) is thin so that the ratio of the shell (plate) thickness to radius is

much smaller than 1 (0 < h/R << 1).

4. Strains are small (of the order e where 0 < e << 1). Displacements are also small

but flexural rotations of shell (plate) elements are moderately large (large enough

to warrant consideration of the out-of-plane projections of in-plane forces in the

out-of-plane equilibrium of the element but still small enough to justify neglect

of changes in geometry in the definition of stress components and in the limits of

integration needed for work and energy considerations).

5. The shell exhibits quasi shallow behavior, a basic assumption of DMV theory.

6. Material behavior is linearly elastic.

One significant ramification of these assumptions is that the integrated constitutive

equations for the cylindrical shell are of the same form as those for a flat plate.
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3.3 Governing Equations

In order to presenta singlesetof governing equationsthatcan be specializedto

eithera cylindricalshellor an annularplate,equationsgoverning the geometrically

nonlinearresponse of the conicalshellsegment shown in Fig. 3.3.1are considered.

In Fig. 3.3.1,_, _2 and _s are the meridional(or axialin the case of a cylinder,radial

in the case of an annular plate), circumferential and normal coordinates respectively,

R is the radius to the origin of the coordinate system, _ is the cone angle (0 ° for the

cylindrical shell 90 ° for the annular plate), ul, u2 and us are displacements in the _i,

_2 and _s coordinate directions respectively and (kl,/_, _s) are the unit basis vectors

of an inertial coordinate system (zl, z2, zs). Note that _2/R is the circumferential angle

in shell of revolution coordinates. The origin of coordinates of the cyl/ndrical shell

is located at the middle surface of the shell. The origin of coordinates of the annular

plate is located at the point where the extension of the midplane of the annular plate

intersects the middle surface of the cylinder to which it is attached. The initial end of

the segment is located at _1 = _g and the final end is located at fl = f_+l. An outline

of the major steps involved in the derivation of the governing equations is provided

below.

3.3.1 Strain-Displacement Equations

The development of the suain-displacement equations begins with the nonlinear

tensor,E,written in vector notation as

where _ isthe gradientof _ -the vectorof displacements- and _" indicatesthatE is

a second ordertensor.Next, a setof localnormalized orthogonalbasisvectors,Y_,_'2,

and _'scan be derived so thatthe disp_ement vector,_, atany point (_i,_2,_s) (see

Fig. 3.3.1)can be writtenas

= ul _'1(_1, _2, _s) + u2 _'2(_1, _2, _s) + us _'s(_z, _2, _s). (3.3.1.2)
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wherethe components of 5.1,5'2, and 5.s are written in terms of the basis vectors, (kl,

k2, k'3), of the inertial coordinate system, (za,z2, zs).

With ff written as it is in Eq. (3.3.1.2), the principles of vector analysis can be

used to derive the following expression for _ff.

"Oux/O_l (R/ro)Oul/O_2 + u2sin_/r, o%1/0_s ]
I

Ca= ou2/a_, (R/ro)_/a_-(,lsin_-_3co_)/r. _2/0_,| (3.3.1.3)
]o_/o_ (R/r.)&,/o_2 -_2_o_/_. &,_/o_,

where

ro = R - _1sin _ + _scos (3.3.1.4)

Substituting Eqs. (3.3.1.3) and (3.3.1.4) into Eq. (3.3.1.1), using the assumptions

listed in section 3.2, and performing the indicated mathematical operations yields the

desired set of strain-displacement equations below

(3.3.1.5)

0 2 u_ 2R sin _ _ ]

= 7_2+ _ x12 (3.3.1.6}

R Ou_
_22 "= _ ""-- --

r 0_2
u_ sin _ - u_ cos

= _2 + _ x_ (3.3.1.7)
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2e13 -- 2_23 -- (£33 "- 0 (3.3.1.8)

where

r = R -fi sin_, (3.3.1.9)

the eij are strains with respect to the _i_j coordinate directions, the _:ij are curvatures

with respect to the _i_j coordinate directions and the superscript ° indicates quantities

evaluated at the reference surface of the shelL

3.3.2 Stress-Swain Equations

As was mentioned in section 3.2, a ramification of DMV shallow shell theory is

that the integrated stress-strain equations for the shell have the same form as those for

a fiat laminated plate. A derivation of these equations, based on classical laminated

plate theory (CLt_, is straightforward and can be found in the text by Jones s4. The

required equations have the familiar form

[B]I{{,°}}{M} [D]j {_} •

where {e ° } is the 3-by-1 vector of middle surface strains, {_} is the 3-by-1 vector of

curvatures, and, given the 3-by-1 vector of stresses, {#},

f l,12
{iv) = .,-,,/2{_) a_,

is the 3-by-1 vector of stress resultants,

hl2

is the 3-by-I vector of stress couples,

NI,,,, [_+1
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are the 3-by-3 membrane, membrane-bending coupling and bending stiffness matrices

respectively, Nla)e,. is the total number of laminae in the laminate, h is the total lam-

inate thickness, _ and _+1 are the normal coordinates bounding the ith lamina, and

_'_ is the 3-by-3 transformed reduced stifl'ne,_ matrix. Within each individual lamina,

stresses and strains in the load-oriented or global coordinate system are related by

(3.3.2.5)

It is sometimes useful to express Eq. (3.3.2.1) in its semi-inverted form

[-B'] T [D'IJ 1,_}

where

[A']= [A]-'

[B']= [A]-'[B]

[D'I= [D]-[BIT[AI-I[B].

(3.3.2.6)

(3.3.2.?)

(3.3.2.8)

(3.3.2.9)

3.3.3 Equilibrium Equations and Boundary Conditions

Equilibrium equations can be derived using the principle of virtual work. For a

body of total volume V, this principle can be stated as

vOWS dV + 6P 0 (3.3.3.1)

where _ij is the stress tensor, 6eij is the first variation of the strain tensor and 5P is

the virtual work of external forces. Substituting Eqs. (3.3.1.5) through (3.3.1.9) into

Eq. (3.3.3.1), using the stress resultants and stress couples defined in Eqs. (3.3.2.2)

and (3.3.2.3), performing an integration by parts, and recognizing the arbitrary nature

of the first variation of the displacement vector results in the following set of equilib-

rium equations

ON_ R ONe2 (N_ -N22) _n_,
0 {-""_+ = 0 (3.3.3.2)," 0_2 r
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a/V12 R aN22 2N12 sm_

a_1 r a_2 r
=0 (3.3.3.3)

.,Vll[-""' ¢'a,.,r,o2,.,_1r a_1+ a_2]+ 2v22
+

r2_-. 1 aN,l
N12 Lr- a_la_=J + a_l a_1

R a/V'12au_

r a_2 a_1

/R'_20N220u_ 0°2_11
k;) of 2 of-'-:+ of,_

2R 0aMI2 2sin@ 0M'II

sm@ aM22 I_)2 m Z_22 2Rsin@ aM12 =r 0_i + 0_22 r2 0_2 -P" (3.3.3.4)

where

r = R - _I sin@, (3.3.3.5)

the N_ are stress resultants with respect to the _ coordinate directions, the M_ i are

stress couples with respect to the _i_./coordinate directions and p is an applied normal

pr_sul_.

The associated boundary conditions at _1 = _ and _ = _+_ are

u_= sl_a_

u_ = specified

u_ = specified

or Nn [1-(-_) sin_]--speeified

or N_2 [1 - (-_) sin #] = speeitied

or Vn = specified

=specified or -Mll - = specified

(3.3.3.6)

(3.3.3.7)

(3.3.3.8)

(3.3.3.9)

where

20Ma2 [1 sin@] Ou__Mll [1--(-_)sin@] -t- +a_11 --(-_)Vn - _ 0_2

(M22- m__)sin#,
R

(3.3.3.10)
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is the K_hhoff shearstressresultant.

3.3.4CompatibilityEquations

Useof a purestressor mixedstress/displacementformulationof theproblemre-

quiresadditionalequationsto insurethat theresultingdisplacementvectoris single

valuedandcontinuous.Theseare referredto as compatibilty equations. A thorough

derivation of these equations for the geometrically linear case with respect to a rectan-

gular cartesian coordinate system can be found in the text by Frederick and Chang sS.

For the more general case of a geometrically nonlinear problem specified in terms of

a curvilinear coordinate system, the derivation of the compatibility equations follows

the same steps as does the derivation found in Frederick and Chang with the following

modifications. The index notation used by the authors, valid only for the rectangular

cartesian coordinate system, must be replaced by vector (or Gibb's) notation - a more

general notation which is not dependent on the coordinate system being used. Deriva-

tion of the compatibility equations then begins with the expression for the: relative:_ dis-

placement vector of two neighboring points, say P and Q,

de =  'tT, de (3.3.4.1)

where Vff is the gradient of the displacement vector (a second order tensor) and dF is

the relative position vector connecting points P and Q and • indicates an inner (or dot)

product. It is understood that V_ is evaluated at point P. It can be shown that Eq.

(3.3.4.1) can be written as

W) , de
4==b

where E is the nonlinear strain tensor given in Eq. (3.3.1.1) and

(3.3.4.2)

(3.3.4.3)

is the nonlinear rotation tensor. Once the proper form of V is determined based on

the particular coordinate system being used and the techniques of tensor analysis are
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applied, derivation of the compatibility equations follows precisely the same steps out-

lined in detail on pages 100 - 102 of the text by Frederick and Chang. Of the six re-

sulting compatibility equations, upon imposition of the assumptions listed in section

3.2, only one equation remains that is not automatically satisfied. This equation, listed

below, is the final equation needed for a complete description of the problem.

/

m
w

wl_re

(3.3.4.4)

r = R - _1 sin _, (3.3.4.5)

the e_j are middle surface strains with respect to the _j coordinate directions and u_

is the middle surface displacement in the _ coordinate direction
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Chapter4

STRU_ ANALYSIS OF THE AXISYMMETRIC

PREBUCKLED EQUILIBRIUM STATE

4.1 Solution To The Equations Governing The Geometrically Nonlinear

Axisymmetric Response Of Cylindrical Shell Segments

The equations governing the response of the prebuckled cylinder can be derived

by setting the cone angle, _ (see Fig. 3.3.1), to zero and imposing the assumption of

an axisymmetric response (0 ( ) / 0_2 - 0) in Eqs. (3.3.3.2), (3.3.3.3), and (3.3.3.4).

The governing equations, in nondimensional form, are

d_x
_- =0 (4.1.1)

d_xy

=0 (4.1.2)

d2_x ,/2,,---o,

_'_Y + gx _ + _ = o
_.A"

(4.1.3)

where the following change of variables has been made in order to match the notation

used by Tennyson, eL al.34 BootonSS and Sun and HansenSZ:

X =71 (4.1.4)

= _ (4.1.5)

N'X = _n (4.1.6)

_'Y =_2a (4.1.7)

Nxy -- N12 (4.1.8)

_1'X ='_n (4.1.9)

M'y = _t'22 (4.1.10)
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_xY = _12. (4.1:11)

The N-"ij are nondimensional stress resultants and the M'ii are nondimensional stress

couples with respect to the _i_j coordinate directions, and Z = L2/(Rt°) where L

is the length of the cylinder, R is the radius to the middle surface of the cylinder wall

and t° is the total thickness of the cylinder. The nondimensional quantifies, indicated

by ("_, are defined in Table 1. If the wall of the cylindrical shell contains a small ax-

isymmetric imperfection in the form of a stress-free radial displacement, Wo, then Eq.

(4.1.3) becomes

dX 2 \ dX2 + dX 2] + _ = 0 (4.1.12)

where _o is the nondimensional form of Wo defined in Table 1. The associated bound-

ary conditions at the ends of the cylindrical shell segment (X = _1 and X =

from Eqs. (3.3.3.6) through (3.3.3.10), in nondimensional form, are

_x = specified or _1° = specified (4.1.13)

_'xY _- specified or _2 ° = specified (4.1.14)

]7 x = specified or _ = specified (4.1.15)

_x = specified or -_- = specified (4.1.16)

where

Vx- _--_ +_x + •

From section 3.3.2, using Eqs. (4.1.4) through (4.1.11), the semi-inverted form of the

nondimensional constitutive equations for the laminated cylindrical shell wall are

_'ell ,

_'°22

Mx

_iy
, _XY ,

An

- -----'* -Bel D'_I_ Die

-B12 -B22 -B62 D22 D2e

-Ble -B2e -Bee Die D2e

m

' Nx '

_y
_xv

0

, 0

(4.1.18)
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where

d_ (4.1.19)
_11 --" ,_¥2 "

Eqs. (4.1.1) and (4.1.2) can be solved immediately yielding constant Nx and

N'-'xy throughout the shell that are equal to the corresponding applied loads. The ax-

isymmetric, nondimensional form of _:1. (3.3.1.7), the strain-displacement equation for

e22,

_'22 = Z'_". (4.1.20)

Equating the fight hand side of F.q. (4.1.20) to the right hand side of the expression

for _22 in F.q. (4.1.18) and solving for _y yields

d2_'° (4.1.21)_y(x) = bl+ b__'(x) + b3d--_(X)

where

\ A22/ \ A22/

b, -- (_;) (4.1.23)

\ A22/

Since _X and "Nxy al_ constanLs, _q. (4.1.12) is a linear ordinary differential equa-

tion in _'°(X). The functional form of the initial imperfection _o used in this study is

that of the axisymmetric buckled mode shape of an infinitely long anisotropic cylinder

subject to axial compression derived by Tennyson, Chart, and Muggeridge 34 and used

by Booton ss and Sun and Hansen s2. The form of this mode shape is

_o(X) = -/_ cos wX (4.1.25)

wl_m

/,0"- m • (4.1.26)
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If R represents the mean radius to the middle surface of the imperfect cylindrical shell

wall, then p is the root-mean-_uare of deviations from this mean radius. Substituting

Eqs. (4.1.18), (4.1.19), and (4.1.21) through (4.1.26) into Eq. (4.1.12) yields

where

a, _ + a2--_ + as_' = gl + _x (I_2 coswX)
(4.1.27)

A22

a2 - 2 -z-_21 - _ x

(4.1.28)

(4.1.29)

_2
as = _ (4.1.30)

A22

(_ _'_ (4.1.31)
_1=_ +_,_---_+ _____

A22 A22 J

Eq. (4.1.27) is a fourth order nonhomogeneons ordinary differential equation with con-

slant coefficients for _", the normalized radial displacement of the prebuckled cylindri-

cal shell The particular solution, _(X), is

l_2-Nx coswX + g-.2-I. (4.1.32)_(x) = a,_' - a2.,2+ a_ a_

The homogeneous solution, _(x), is of the form

_'x(X) = _ Bie _x (4.1.33)

j=l

where the Bj are constantsof integrationto be evaluatedusing the boundary condi-

lionsand the_j are the rootsof the associatedcharacteristicequation

al_ +a2x2+o_-o. (4.1.34)

These roots ale

A#= ±At± iA2 (4.1.35)
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where

"C,°-,
)'I = 2 V V al a1'

_a

12 = -_V V al + al

(4.1.36)

(4.1.37)

and i = _'L-f. For the case where _x is negative (compressive), Booton _5 has shown

that if _x is less than the classical axisymmetric buckling (or collapse) load of the

shell (the only case to be considered in this study) then

_'°x(X ) = B_e_',X _n(l_X) + B2e-X'Xeos(l_X)

+ B3eX'Xcos(A2X) + B4e-_'Xsin()_2X)

(4.1.38)

The total solution, _(X), is

wo(x) = _(x) + _(x). (4.1.39)
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4.2 Solution To Equations Governing The Geometrically Linear

Axisymmetric Response Of Annular Plate Segments

The equations governing the geometrically nonlinear axisymmetric response of the

prebuckled annular plate can be derived by setting the cone angle (¢) to ninety degrees

and imposing the assumption of an axisyrametric response ( 0 ( ) / 0_2 = 0 ) in Eqs.

(3.3.3.2) through (3.3.3.10). The normal pressure, p, is assumed w be zero and the

radius, R, is to the origin of the (_1, _2, _3) coordinate system which is located at the

middle surface of the cylinder to which the annular plate is attached and not at the out-

board edge of the plate. Unfortunately, this does not lead to a set of linear equations

which can be solved exactly as it does in the case of the cylindrical shell. To avoid the

numericaYiterative analysis necessary to predict the geometrically nonlinear response, it

will be assumed that the response can be estimated reasonably accurately using a geo-

metrically linear analysis. Ignoring prebuckling nonlinearities might be acceptable for

the ring webs since it is likely that the combination of the radial membrane resultant

in the annular plate and flexural rotations, which form the dominant nonlinear terms,

would be small considering that the inboard edge of the annular plate is free and that

the axial compression and torsional loadings in the shell act normal to the outboard

edge of the annular plate. Dropping the nonlinear terms from the axisymmetric form

of Eqs. (3.3.3.2) through (3.3.3.4) and nondimensionalizing the result (see Table 1)

yields the desired equations shown below.

tiN-', o

d2_,, 2(L/R) d'_n (L/R) d'_,,

+
where

(4.2.1)

(4.2.2)

=0. (4.2.3)

_'- [1- (_-)_] , (4.2.4)
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L is the length of the cylindrical shell to which the annular plate is attached and _ij

and Mij are nondimensional stress resultants and stress couples, respectively, with re-

spect to the _i_j coordinate directions. The associated boundary conditions at _1 =

_,_/L and, "_1 = _+I/L (see Fig. 3.3.1) from the geometrically linear, axisymmetric,

nondimensional form of Eqs. (3.3.3.6) through (3.3.3.10) are

_11_ = specified or _o = specified

_'12 _ -- specified or _z ° = specified

V11_ = specified or _o = specified

_ = specified or _d'_3° = specified

where _//is a nondimensional midplane displacement in the _i coordinate direction,

is defined in Eq. (4.2.4) and

(4.2.5)

(4.2.6)

(4.2.7)

(4.2.8)

is the non_-nensional Kirel_off shear stress resultant. The equation governing in-plane

strain compatibility, from the geometrically linear, axisymmewic, nonclimensional form

(4.2.9)

(L/R) d'i°11 2 (L/R) d_2_ d2"_'22

+ = o. (4.2.10)

of Eq. (3.3.4.4), is

where the _j are nondimensional midplane strains with respect to the ij coordinate

directions and V is defined in Eq. (4.2.4).

Solutions to the equations governing the axisymmetric response of annular plates

made of polar orthotropic material (e.g. a fiber composite laminate with fibers running

radially and circumferenfially) have been published by Leidmitskii se and Bryant sT.

Padovan ss presen_d Soiu-fions to the _ar eqtmfions governing the bending of such

plates subject to generally asymmetric loads; however, it can be shown that the ax-

isymmetric problem admits exact solutions regardless of the stacking sequence of the

plate. This can be shown as follows.

52



The semi-inverted form of the laminate constitutive equations for the annular plate

are presented in section 3.3.2. Referring to Table 1, the constitutive equations in nondi-

mensional form are

(4.2.11)

where, from the axisymmelric, nondimensional form of Eqs. (3.3.1.5) and (3.3.1.7)

d2_ °
_l, -- d_.21 (4.2.12)

w

K:22 ---
(L/R)d_3"

It can be shown by direct substitution that the solution to Eq. (4.2.2) is

(4.2.13)

-- .4 (4.2.14)N12 =

where A is a constant of integration which depends on the imposed boundary condi-

tions. The annular plates considered in this study are assumed to have traction-free

inboard edges; hence, at this edge

N_2 = 0. (4.2.15)

Therefore,

A = 0, and thus (4.2.16)

_,_ (L) = o. (4.2.1_)

Rewriting_. (4.2.3), the out-of-plane equilibrium equation, can be written as

a (_,,) ,_"-_
= 0. (4.2.18)d_2 d_
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where

m m _ _

dF d_l

This equation can be integrated once to yield

-rC ÷ - = =
where c_ is a constant. Since the inboard edge of the annular plate is assumed to be

traction-free, VnV = 0 at this edge. Thus c_ = 0 and

(4.2.19)

(4.2.20)

a (_.) _'_ = o. (4.2.21)
dF

Using Eq. (4.2.19), Eq. (4.2.1) becomes

d_11 _. - _22) =o.

Eq. (4.2.22) is satisfied exactly by the stress function X (F) defined such that

(4.2.22)

_r n _ _X_ (4.2.23)
P

dx (4.2.24):V22= _.

Use of the stress function X requires satisfaction of the in-plane strain compatibility

equation - Eq. (4.2.10). Using Eq. (4.2.19) and integrating once with respect to F,

this equation becomes
d_22

(_n - Z"22) - F_ -- c2 (4.2.25)

where c2 is a constant allowing for a uniform prestraining of the structure. Ignoring

any such prcswainingresultsin c2 = 0 and

Fd'_°22(_011- _'22)- _ = 0.

Eqs.

applying E_t.

(4.2.26)

(4.2.21) and (4.2.26) can be solved using Eqs. (4.2.11) through (4.2.13). First,

(4.2.19) to Eqs. (4.2.12) and (4.2.13) gives

- (_)2df__= - Trr (4.2.27)
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where

d'ff3° (4.2.29)
de

Substituting Eqs. (4.2.23), (4.2.24) and (4.2.27) through (4.2.29) into Eqs. (4.2.11)

then substituting Eqs. (4.2.11) into Eqs. (4.2.21) and (4.2.26) and collecting terms

results in the governing equations for the midplane flexural rotation fZ and the stress

function X of the annular plate

_4= A22

re = D11

77- D22

7s = B21

")'10 -- _112"

(4.2.30)

where

(4.2.32)

(4.2.33)

(4.2.34)

(4.2.35)

(4.2.36)

(4.2.37)

(4.2.38)

(4.2.39)

(4.2.40)

(4.2.41)
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The governingequations(Eqs. (4.2.30)and(4.2.31))areequidimensional in _; hence,

they can be made autonomous by using file change of variables

s = InV. (4.2.42)

This change of variables transforms Eqs. (4.2.30) and (4.2.31) into two simultaneous

linear ordinary differential equations with constant coefficients

LI(_) + L2(x) = 0 (4.2.43)

L3(_) + L,(X) = o

where the L_ are the linear, constant-coefficient, second order operators

d_()L1= _ d--_-+ (-r,-'_) -_3()

d_()
L_= --_,_ + _s( )

d_()

d_() d() _ _o()L, =-r. d--_-+ (_. - _a)-_--

(4.2.44)

(4.2.45)

(4.2.46)

(4.2.47)

(4.2.48)

The operators L_ and L4 are nonzero when material coupling of bending and ex-

tension exists, as is the case when the annular plate is laminated unsymmetrically with

respect to its reference surface (midplane). For symmetric laminates, Eqs.(4.2.43) and

(4.2.44) uncouple since [B-*] = 0 so that

d2x

74 ds , _'sX - 0 (4.2.49)

d2fl

re ds 2 7TN -- 0. (4.2.50)

The solutions to these equations are

x(8)= Ci•°=°+ C2e-°'° (4.2.51)
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n(8) - :'" + (4.2.52)

where the Ci are constants of integration to be evaluated using the imposed boundary

conditions and

"}'_ _ (4.2.53)

7_ _ (4.2.54)

Since the radicands are always positive, al and a2 are always real; hence, Eqs. (4. 2.

51) through (4.2.54) represent all the possible solutions to Eqs. (4.2.49) and (4.2.50).

The special case of a symmetric laminate is typically the most practical; however.

exact solutions to the more general problem of an annular plate made of an unsymmet-

tic laminate can also be found. When Eqs. (4.2.43) and (4.2.44) remain coupled, they

can be solved by the method of elimination (see Boyce and DiprimaSg). When L_ and

L4 are nonzero operators, application of this method to these equations results in the

single ordinary differential equation for

L, ILl (f_) ] - L2 [Ls (f_)] - 0 (4.2.55)

Note that if [B*] = 0, L2 and L4 are both zero and Eq. (4.2.55) becomes 0 = 0, an

identity. Assuming [B*] _ 0, expanding Eq. (4.2.55), and collecting terms produces

d4fl d2fl
Pl _ + Ps-_- + psi2 = 0 (4.2.56)

where

pl-[(B_1)2 ÷A'_22D'_11] (L) 2 (4.2.57)

P3 -- [ (_111 -- _ 2 2

,,=B.) . (4.2.59)
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Eq. (4.2.56) is a fourth order homogeneous ordinary differential equation with constant

coefficients for the normalized flexural rotation, f/, of the prebucided annular plate. As

was the case for the cylindrical shell segment, the form of the solution to Eq. (4.2.56)

is

= (4.2.60)

jffiffil

where the Cj are constants of integration to be evaluated using the remaining boundary

conditions (Eqs. (4.2.5) and (4.2.8)) and the _j are the roots of the associated charac-

teristic equation

pl"_ + p3_ 2 + P5 =0. (4.2.61)

the roots of this equation are

_j = 4-_ 1 4- i._2 (4.2.62)

where i= V/'Z'] "

(4.2.63)

/m

= ÷-
(4.2.64)

Pl"

X can now be determined using either Eq. (4.2.43) or Eq. (4.2.44). From Eq. (4. 2.

43)

/-_(X) - -L1 (f_). (4.2.65)

This is a second order nonhomogeneous ordinary differential equation with constant

coefficients. The particular solution can be found using the method of undetermined

coefficients and EqJ (4.2.60) - the solution for i2. The homogeneous solution pro-

duees two more extraneous constants of integration; however, by considering equation

(4.2.44), it can be shown that unless bending-stretching coupling is absent (another

solution altogether) these constants must be zero. This completes the solution of the

problem. The stress resultants can now be found using Eqs. (4.2.23) and Eq. (4.2.24);
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thenormal displacement, ff_ °, can be found by integrating the expression for the ro-

tation, f_, once - the constant of integration representing rigid body normal displace-

ment (if any) of the plate. An expression for the in-plane radial displacement, _1 °,

can be found using the solutions for f_ and X, the laminate constitutive relations ( Eqs.

(4.2.11)), and the strain-displacement equation

_'_'1 o (4.2.66)'_22 --'_ m
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4.3 Determinationof Constantsof Integration

In sections 4.1 and 4.2, the particular and homogeneous solutions to the differen-

tial equations governing the prebuckling response of cylindrical shell and annular plate

segments were presented. It remains to determine the constants of integration asso-

ciated with the homogeneous solutions of the governing equations. Each of the shell

segments, whether they are cylinder or annular plate segments, have four constants of

integration associated with the solution to that segment's governing differential equa-

tion(s); thus, if there are a total of N shell branches, a total of 4N equations is needed

to determine the required constants of integration. Determination of these constants is

related to the boundary conditions which have yet to be imposed. The first four neces-

sary equations are those associated with the clamped boundary conditions at the ends

of the cylindrical shell

_-o __ d-'X" - 0 at X = +1. (4.3.1)

The next 2m equations, where m is the number of ring webs present in the struc-

ture, reflect the assumption that the inboard edges of these webs ate waction-free. At

these edges, therefore

N'_11 - _1 = 0 I = 1,2,...,m. (4.3.2)

The remaining necessary equations are related to deformation compatibility and

equilibrium at junctions where shell branches are connected. The most gene_ situa-

tion is depicted in Fig. 4.3.1, where an ann_ plate segment intersects the cylindrical

shell. Deformation compatibility and equilibrium enforcement at the point P indicated

in the figure result in the following six equations:

+1- = 0 (4.3.3)

u_+' + u_ ''b -- 0 (4.3.4)
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du_ +1 du_ (4.3.5)
T = 0

1
"d_ 'i d_" = 0 (4.3.6)

M_ +' - M_I + M_ "_ = 0 (4.3.7)

V1i+1 - V1i - N_ "b = 0 (4.3.8)

where i and i + 1 identify the two cylindrical shell segments that meet where the ring

web is connected to the shell and web identifies quantifies related to the ring web (an-

nular plate) evaluated at the outboard edge of the web. At first, it appears that the ad-

ditional equilibrium equation N_ +' - NI, -F VI_" = 0 and the additional deformation

compatibility equations u_+1 - u_ = 0 and u_+1 - u_ "_ = 0 are also needed. How-

ever, since the inboard edges of the ring webs are assumed to be traction-free, the as-

sumption of an axisymmetric prebuclding response and equilibrium of the ring web in

the _s coordinate direction dictates that V_ =b = 0. Hence, the attachment of the ring

webs to the cylinder wall does not affect the constant Nn in the cylinder wall - it re-

mains equal to the applied axial load in each cylindrical shell segment. The additional

deformation compatibility equations, u_+1 - u_ = 0 and u_+1 - u_ '=b = 0, would be

needed only if the distribution of uz in the cylinder wall was required. However, since

the prebuckling stress state in the ring-stiffened cylinder can be completely determined

without calculating u_, this calculation is not made in the present study.

Using Table 1, Eqs. (4.3.3) through (4.3.8) in nondimensional form become

_+1 _ _ = 0 (4.3.9)

_+1 + _T,l=_ = 0 (4.3.10)

d'%+1 _ =0 (4.3.11)

d -7'

=0 (4.3.12)
d_l yi d_"_ eb
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_I _ _I + _;_ = 0 (4.3.13)

V,÷, L ,:b
11 - - _, 11 = 0. (4.3.14)

For the case where no ring web is present but the cylinder skin experiences a sudden

_hickness change, the following four equations (in nondimensional form) are needed to

enforce deformation compatibility and equilibrium at the point where the two cylindri-

cal shell segments are joined

_+1 __ =0

=°

(4.3.15)

(4.3.16)

(4.3.17)

(4.3.18)

Should the ring web itself experience a sudden thickness change, the following four

equations (in nondimensional form) are needed to enforce deformation compatibility

and equilibrium at the point where the two annular plate segments, web and web + 1,

are joined

_¢b+1 _ _._,Ieb _ 0 (4.3.19)

d'5_'¢b+l d'_s'b = 0 (4.3.20)

dr" dr"

M"n "b+1 - _1"_i; b = 0 (4.3.21)

N-_I;b+1 - N-_I;b = O. (4.3.22)

As noted earlier, the inboard edges of the ring webs are assumed to be traction-

free; hence, the assumption of an axisymmetric prebuclding response and equilibrium

of the ring web in the _s coordinate direction dictates that Vl_ '_b - 0 in each web

segment, making an additional set of equilibrium equations for the Kirchhoff shears

in the various segments unnecessary. The additional deformation compatibility equa-

tion, u_ '_+l - u_ ''b = 0 would be needed only if the distributions of u3 in the ring
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webs were required. However, since the prebuckling stress state can be completely de-

termined without calculating u3 in the ring webs, this calculation is not made in the

present study.

Eqs. (4.3.1)through (4.3.22)can be used to completely determine allof the con-

stantsof integrationarisingfrom the exact solutionsto the governing differentialequa-

tionsof each shellbranch. Using theseexact solutionsevaluatedat the boundaries and

atpointswhere separatesegments are connected in Eqs. (4.3.1)through (4.3.22),as

required,resultsin a system of linearalgebraicequationsof the form

[KK] {C} = {FF} (4.3.23)

where [KK] contains terms from the homogeneous solutions to the governing equa-

tions of the various shell branches evaluated at boundaries and where the branches are

connected, {FF} Contains terms from the nonhomogeneous solutions to the governing

equations and {C} is the vector containing the constants of integration of the various

shell branches. It was discovered that using homogeneous solutions to Eq. (4.1.27)

written in terms of hyperbolic sines and cosines results in a singular [KK] matrix for

cylinders with length-to-radius (L/R) ratios greater than about 2. The matrix [KK] be-

comes singular because for large arguments the hyperbolic sine and cosine functions

become numerically equal causing a linear dependence among the four terms of the

homogeneous solution to the governing equation. This difficulty can be overcome by

writing the solution in the form of exponentially modulated harmonic functions, as

shown in Eq. (4.1.38).
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4.4 Stress Analysis at the Ring Flange/Cylinder Wall Interface

The solutions to the governing equations of sections 4.1 through 4.3 can be used

to calculate the stresses at any point in the ring-stiffened cylindrical shell For the

cylindrical shell segments, calculation of the in-plane axial and circumferential stresses

is straightforward and is outlined in section A.1 of Appendix A. While the interlami-

nar stresses are ignored in the development of the shell analysis, these stresses are not

zero. As shown by, for example, Boitno_ 4. the interlaminar stresses may be calcu-

lated by substituting the tangential stresses calculated using shell theory into the three-

dimensional elasticity equations and solving for the interlaminar stresses by integrating

the equations with respect to the thickness coordinate, layer by layer through the en-

tire thickness of the laminate, then imposing stress continuity at each layer interface

and surface traction boundary conditions at one surface of the laminate. Details of this

development can be found in section A.2 of Appendix A.

As mentioned in section 3.2, high through-the-thickness normal and transverse

shear stresses which have been demonstrated to exist in the region adjacent to the

point where the shell skin first meets a frame flange cannot be adequately estimated

using the technique outlined in section A.2 of Appendix A. Integration of the three-

dimensional elasticity equations using the in-plane stress resultants from the two di-

mensional theory does not reflect the existence of a free edge in the ring flange. The

result of the neglect of this free edge can be seen immediately in Eqs. (A.1.8) through

(A.1.10) of Appendix A - the expressions for the tangential stresses. Note that each

resulting stress varies linearly throughout the entire thic_ of the laminate. At the

point where a ring flange steps down to meet the cylindrical shell skin this linearly

varying stress distribution is not possible since the edge of the frame flange at this

point  tion-fr .
Another reason that the stress analysis of Appendix A is deficient in the flange/-

skin region is that by merely treating the adhesive layer as a "soft" ply in CLT theory,

it is assumed that the through-the-thickness transverse shear and normal stresses in this
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layer arenegfigiblysmallcomparedto thein-planestresses(planestressassumption).

In their widely recognized paper on the analysis of adhesively-bonded single-shear lap

joints, Goland and Reissner 9° indicate that the neglect of the in-plane stresses in com-

parison to the through-the-thickness transverse shear and normal stresses is actually

more representative of the load wansfer mechanism in an adhesive layer that is much

thinner than the adherends and that has a much lower Young's modulus than the ad-

herends. Goland and Reissner offered two rational formulations, one applicable to the

analysis of single shear lap joints made of thin metallic adherends, the other applicable

to the analysis of single-shear lap joints made of thick wood or plastic adherends. The

former formulation, applicable to most thin-walled aerospace structures, relies on the

following basic assumptions

1. Through-the-thickness normal and transverse shear stresses in the adheren_ can

be neglected in comparison to in-plane stresses

2. In-plane stresses in the adhesive can be neglected in comparison to the through-

the-thickness normal and transverse shear stresses.

3. The through-the-thickness normal and transverse shear stress_ in the adhesive do

not vary through the thickness of the adhesive.

Since Goland and Reissner's paper was first published in 1944, these basic assumptions

have formed the basis of nearly every study in which a practical working estimate of

the stresses in the joints of secondarily bonded thin-walled structures is required. For

example, the relatively recent work of Wang and Biggers 5° on skin/stiffener interface

stresses in bonded, stiffened, fiat panels relies heavily on these assumptions. Goland

and Reissner's assumptions have also been used in the study of tubular lap joints in

isotropic cylinders by Lubkin and Reissner _1, Terekhova and Skoryi 92, and Adams and

Peppiatt 93, and in the study of tubular lap joints in laminated fiber composite cylinders

by Updike and Yuceoglu 94 and Chon °5. These studies quantified the importance of ac-

counting for curvature of the adherends and nonlinear material behavior of the adhesive

in the theoretical analysis. Hart-Smith 9e identified the neglect of nonlinear adhesive
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materialbehaviorasa seriousshortco_g of GolandandReissner'stheory in his thor-

ough study of single-shear lap joints made of both metal and laminated fiber composite

adherends.

It is assumed in the present study that the tings are secondarily bonded along their

flanges to the shell skin using a ductile (see Hart-Smith 'e) adhesive. To obtain csti-

mates of the stresses in the adhesive layer, an analysis is proposed incorporating the

Goland and Reissner assumptions and using an approach similar to that of Wang and

Biggers 5°. Whereas in sections 4.1-4.3 the llange-adhesive-attached skin combination

was treated as a single shell segment characterized by a single set of constitutive equa-

dons, the segment is now treated as two short cylindrical segments connected along

an outer surface by a ductile adhesive as shown in Fig. 4.4.1. In Fig. 4.4.1, the su-

pet-scriptsw, f, B, and s are used to indicatequantitiesrelatedto the ringweb, ring

flange,adhesive bond and attachedskinrespectively.Ni# and Mij are stressresul-

tantsand stresscouples relatedto the _i_/coo_r0ina_"directions0f the variousshell

segments, o'ssisthe normal stress(referredto as "peel"stressifthisstressistensile)

in the adhesive and y13 and r2s are the adhesive transverseshear stresses.The thick-

ness of the adhesivelayerish and itisassumed thatthe adhesive isappliedover the

entireringflangelengthLI. Note from Fig. 4.4.1that_f - _ = _i#'and _ = _ =

_2/ so that the su_pe_scri_p_can_ dropped _om_ese-_quantifies. _DMv theory is again

used to determine the response of the flange segment and attached skin; furthermore,

the Goland and Rei.ssnerassumptions _ consideredvalid.Since thisanalysisisonly

to be used to estimate stresses in the prebuckled equ_L!'bdum configfiradon, the axisym-

metric form of the governing equations is applicable. The equilibrium equations gov-

erning the axisymmetric response of the ring flange are

d{'-7"+ r13 = 0 (4.4.1)

+ r_3 = 0 (4.4.2)
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d2M[' Naa! + + N], _ + #ss + 2 d_, -P (4.4.3)

The equilibrium equations governing the axisymmetrie response of the skin attached to

the ring flange are

dNfi
d_l _'ls - 0 (4.4.4)

dN 2
r23 "-0 (4.4.5)

aaM_l N22" dN_l du_" aau_" t, drls

d_ R, + d_l d_l + N_I d_ vss 2 d_l
- 0 (4.4.6)

where R/is the radius to the middle surface of the ring flange, R, is the radius to the

middle surface of the cylinder skin, t! is the total ring flange thickness, and t, is the

total cylinder skin thickness. Exls. (4.4.1) through (4.4.6) can be derived by setting

_b = 0 and 0()/0_2 = 0 (see Fig. 3.3.1) in Eqs. (3.3.3.2) through (3.3.3.5) and

accounting for the surface tractions ass, rlS and r23 arising due to the presence of

the adhesive layer. Since these stresses are assumed to be constant through the entire

thickness, h, of the adhesive, they act on both the outboard surface of the ring flange

segment and on the inboard surface of the attached skin segment at the same value

of _1. Since it is assumed that t/and t, are small, the term (tl/2)(dr13/d_l) in Eq.

(4.4.3) and the term (to/2)(drls/d_l) in Eq. (4.4.6) are neglected. The effects of ge-

ometric imperfections are ignored in this theoretical analysis; furthermore, like in the

analysis of Wang and Biggers 5°, the strain-displacement equations for the adhesive are

based on geometrically linear theory while the strain-displacement equations related

to the ring flange and attached skin are based on geometrically nonlinear theory. The

resulting geometrically nonlinear equilibrium equations that characterize the response

of the ring flange and attached skin, Eqs. (4.4.1) through (4.4.6), are then linearized

in the following way. Consider Eqs. (4.4.1) and (4.4.4). If rl_ = 0 then N[_ and

N_I would both be constant and equal to the axial load applied to the segment bound-

ary. If rls _ 0 then assume that N[a and N_I can be written as N_ (*) + N_(1)(_1)

and N_ *) + N_l)(_l) respectively where NIl (0) and N_ 0) are constant and equal
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to theNx_ applied at the boundaries of the short cylindrical segraents and the terms

N[(1)(_1) and N_1)(_1) represent additions to these constant stress resultants resulting

from the rlS(_) that arises due to the presence of the adhesive. While the products of

N[ (°) and N_ (°) and the local flexuraI rotations of the adherends are retained in the

analysis,the products of theserotationsand N[(11)(_a)and N;_z)(_1) are assumed to

be small and are neglected.N[(I°) iszero and N_ °)isequal to the axialcompressive

load appliedto the cylinder.Since NIl and N_I are assumed constant,Eqs. (4.4.1)

through (4.4.6)now form a system of linearordinarydifferentialequationswith con-

stantcoefficientsThe adhesive isassumed to be isotropicand homogeneous. The linear

strain-displacementequationsin the adhesive,consistentwith DMV shelltheoryare

_33 = _3

: T, +a-R/

(4.4.8)

(4.4.9)

where ess is the adhesive normal strain (or "peel" strain if the strain is tensile), the _i_

are adhesive transverse shear stems with respect to the ij coordinate directions and

the u_ are adhesive displacements in the _ coordinate directions. Based on linear

isotropic elasticity,, the stress-strain equations within the adhesive, neglecdng the tan-

gendal stresses, are

where EB is the Young's modulus and GB is the shear modulus of the adhesive. In

joints with laminated fiber composite adherends, Hart-Smith _s recommends replacing
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EB with an "effective peel modulus" to account for the low transverse Young's moduli

of the adherends not present in metallic structures. This recommended "effective peel

modulus", Ep, is given by

= _ + _ (4.4.13)
Ep EB E2

where E2 is the transverse Young's modulus of a single lamina of the adherends.

After imposing the assumption of an axisymmetric response ((0()/0_2) = 0), Eqs.

(4.4.7) through (4.4.12) can be used to solve for the adhesive displacements in terms

of the adhesive stresses. Using bounda_ conditions at the outboard surface of the ring

flange and the inboard surface of the cylinder skin, the expressions for the adhesive

displacements can be re-written as equations that relate the middle surface displace-

ments in the ring flange to those of the attached cylinder skin, effectively eliminating

the adhesive displacements from the problem. These equations are

u; ! -ha3s
-- E'--'_ + u;" (4.4.14)

u;I
= Ga +u_s (4.4.15)

- GB L2Ep+2-_p d_'--_'- -T-

In these equations, the u7" are middle surface displacements of the cylinder skin in the

_ coordinate directions, u_.! are middle surface displacements of the ring flange in the

_1 coordinate directions, t, is the total cylinder skin thickness and t I is the total ring

flange thickness. Solving for the adhesive stresses in Eqs. (4.4.14) through (4.4.16)

yields

(4.4.16)

(4.4.17)

(4.4.18)

(4.4.19)

69



SubstitutingEqs. (4.4.17) through(4.4.19) into Eqs.

dimensionalizingthe resulting set of equations using Table 1 gives

where

d_'_l +_13 0

(v) -_'_÷_ : -_

dNll _'ls : 0

d2M_ (/,2) .. d2_,

d_ !

__ -_B ,...ofvss : _33tu3 - _')

-C_ = -LSOst"
D_lh

--s -L4Ep
_33 "-

D_lh

(,.h)_, =v_ __ fL '

(4.4.1) through (4.4.6) and non-

(4.4.20)

(4.4.21)

(4.4.22)

(4.4.23)

(4.4.24)

(4.4.25)

(4.4.26)

(4.4.27)

(4.4.28)

(4.4.29)

(4.4.30)

(4.4.31)

(4.4.32)

("_ indicates that ( ) is a nondimensional quantity, D[_ is the axial bending stiffness of

the cylinder skin, L is the total cylinder length, R! is the radius to the middle surface
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A

of the ring flange, Ro is the radius to the middle surface of the cylinder wall, and N1]

is the nondimensional axial compressive load applied to the shell which is constant.

The nondimensional su'ess-strain equations for the ring flange and attached cylin-

der skin are (see section 3.3.2 and Table 1)

' _11 '

N22

N12

M11

M22

, M12 ,

•(I) *(I) '_1 ' e(l)

0

, 0

(4.4.33)

where

Substitution of Eqs. (4.4.33) into Eqs.

L2

_2°(t) - (_,(l)to') _'(1)

(4.4.20) through (4.4.25) results in

(4.4.34)

(4.4.35)

(4.4.36)

(4.4.37)

=0 (4.4.38 i

(_) d_ ",-- a_l+x_ K -_

___1 --_..-.1 -=_---.,
-_l "_" C'i3U2 -- _./'13U.2

=0

+-_ _R,,'-"'I)d_.-=-d=_

(4.4.39)
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(4.4.40)

=0 (4.4.41)

(4.4.42)

-, Z,2 _" ---, _u'3" an_,
1) --'---- + _'11 _ -----B -.of _;'B -..oo

+B2z R°t" d_ Z' d_ d_ -O's°us +t..,ssu s

=0 (4.4.43)

Eqs. (4.4.38) through (4.4.43) form a system of coupled, nonhomogeneous ordi-

nary differential equations with constant coe_cients. As shown in Appendix B, the

equations governing the response of a flange segment and the attached skin can be
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writtenasa nonhomogeneous,constant-coefficientsystemof 16 first order differential

equations of the form

{U') = [B]{U} + {F} (4.4.44)

where the 16-by-1 vector {U} contains flange and skin nondimensional displacements

and their derivatives up to order three (see Eq. (B.17) in Appendix B) and

d

{_,}= d_-=[{_}-

Assuming the solution to the homogeneous problem is of the form

{u}= {c}_'_,

(4.4.45)

(4.4.46)

the total solution is

{u(L)}= [_(L)]{c}+ {u_(L)} (4.4.47)

where [cI'(_l) ] is a 16-by-16 fundamental matrix whose columns are made up of the

16 linearly independent solutions to the homogeneous problem (see Boyce and Dipri-

ma$9).

The particular solution, {Up}, can he found using the method of undetermined

coefficients. Since the only nonzero entry in the vector {F} is F8 and it is a constant

(see Eq. (B.19) in Appendix B), then a spatially uniform particular solution is sug-

gested. Let u_ yP, u_ yP, u_ I P, u_ °P, u_ °P, and u_ °P represent the nonzero, but con-

stant, elements of the particular solution. It can be shown by direct substitution that

where

',4 Ip _ o '
u_/P I 0

, ,4IP I_= P_
u_.P / ' 0 '
uo°P I

j o,P2,

(4.4.48)

e3;_Z" (4.4.49)
/'1= e3;e33] _ e3._e3_
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e3._Z (4.4.50)
P_ = e3|e33/- e3._e37/

is the nondimensional applied pressure, _ - L2/(R.t.) and e3_, e3_, e3_, and e3_

are defined in Eqs. (B.15) and (B.16) of Appendix B.

Determining the form of [4_] involves finding the eigenvalues of the coefficient

matrix [B]. When all of these eigenvalues are distinct, determining a set of linearly

independent solutions to the homogeneous form of Eq. (4.4.44) is straightforward;

however, ff several eigenvalues are repeated, finding a linearly independent set of so-

lutions becomes much more difficult. It was discovered that [B] possesses repeated

eigenvalues of unknown multiplicity; hence, a numerical method known as the multi-

segment technique, successfully employed by Kalnins 97 in the linear static analysis of

shells of revolution, has been chosen to solve the homogeneous problem. In the multi-

segment technique, the domain is artificially divided into additional segments (referred

to as multi-segments in the present study to distinguish them from physical structural

segments) in order to ensure that a loss of accuracy, due to the exponential growth of

the solutions to the homogeneous form of Eq. (4.4.44), does not occur during the nu-

merical integration of the homogeneous form of Eq. (4.4.44) over a domain that is

too long. The form of the total solution iv; each raulti-aegment is still the same as Eq.

(4.4.47). However, in this case {-C) is a 16-by-1 vector of {U} evaluated at the ini-

tial end of a multisegment, say multisegment number ms. For clarity, this vector of

constants will be referred to as {u_} _'.

In order to determine the {ui} ma in the various multisegments, boundary condi-

tions must be imposed at the ends of the flanges, at the ends of the attached skin, at

the junction where the ring web is connected to the ring flange, and at the ends of the

various multisegraents. Su'ess resultants and stress couples from the shell analysis de-

scribed in sections 4.1 through 4.3 are used as loads applied to the joint. This is the

same approach as that originally used by Goland and Reissner and has been criticized

by Hart-Smith 96. However, since the stresses calculated by Hart-Smith using his more
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consistent analysis are generally lower (and therefore less conservative with respect to

design) than those calculated using the Goland and Reissner approach, the latter ap-

proach will be used in the present study. Conditions at the point where the frame web

intersects the frame flange assuring continuity of displacements and flexural rotations

are also needed. Finally, continuity of all response quantifies at segment boundaries re-

mote from the flange edges and the web intersection must be enforced. Mathematically

these conditions can be stated as, at (1 - _ (see Fig. 4.4.1)

--°'Mn --- _n (4.4.51)

--"Vii-- Vn (4.4.52)

--*'Nn-" _n (4.4.53)

"-'_*_Nl2- _12 (4.4.54)

_ -0 (4.4.55)

17_ = 0 (4.4.56)

_'_ =0 (4.4.57)

_ = 0. (4.4.58)

where superscript fi indicates quantities related to the first flange segment evaluated at

_1 - _], superscript _ indicates quantifies related to the first attached skin segment

evaluated at _l = _ and _]_n, _Tll, _'1 l, and _12 are the nondimensional axial stress

couple, Kirchhoff shear stress resultant, axial stress resuitant and tangential shear stress

resultant at _l -- _ from the analysis of sections 4.1 through 4.3. Note that similar

conditions exist at _l --

intersects the ring flange

_+2 (see Fig. 4.4.1). At _l = _{+1, where the ring web

(4.4.59)

(4.4.60)
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=0

=0

vf;÷'- vf; - v.

:v,"1÷'- :V 'l=o

=o

(4.4.61)

(4.4.62)

(4.4.63)

(4.4.64)

(4.4.65)

(4.4.66)

(4.4.67)

(4.4.68)

where superscript fi+_ indicates quantities related to the ring flange segment i + 1 in

Fig. 4.4.1evaluatedat_i = _+i, and superscriptw indicatesquantifies relatedto the

ringweb. Nix and _Jrlxare the stressresultantand stresscouple atthe outboard edge

of the web which are calculatedbased on the analysisof section5.3. Note thatsim-

ilarboundary conditionsare not requiredforthe attachedskinbeneath the ringweb

sinceitisassumed thatthe web isconnected to the ring flangeonly. Finally,at seg-

ment boundaries remote from the frame web and frame flangeedges

{"F}""+ {"P}""= {_}'"+' + {"V}""+' (4.4.69)

where {UF} m'' represents {U} evaluated at the end of multisegment real, {u_} m°'+'

represents {U} evaluated at the beginning of the next adjacent multisegment mai+l

and {Up} m*' and {up} "°'+_ represent the (constant) {Up} asso_lgd with multiseg-

ments msi and msi+x respectively. Assuming the domain is divided into a total of m

multisegments, all of these boundary conditions can be written as a system of linear

algebraic equations of the form
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}
[b] " -- {f}. (4.4.70)

where [hi contains terms associated with the [@] malrix of the various multisegments

evaluated at the ends of these multisegments and {f} contains terms associated with

the applied loads and the particular solutions, {Up}, of the various multisegments.

Hence,

(4.4.71)

thus completing the solution of the problem. Note that the size of the [b] matrix is

24+16m where m is the total number of multisegments. The adhesive stresses can then

be calculated using Eqs. (4.4.17) through (4.4.19).

As stated earlier, some consideration of nonlinear material behavior of the adhe-

sive is necessary in order to develop meaningful estimates of adhesive stresses. As

noted by Hart-Smith _e, a typical ductile adhesive used in structural bonding exhibits

significant nonlinear material behavior at stresses above 6000 psi. If this stress is a

ors3 "peel" stress, failure due to delamination of the composite adherends would oc-

cur in a typical graphite/epoxy fiber composite laminate. This is the most typical fail-

ure mode for single-shear joints with laminated fiber composite adherends observed

by Hart-Smith in the laboratory. Hence, assuming inteflaminar normal stresses in the

as-designed joint must remain below this 6000 psi threshold, Hart-Smith recognized

that use of a linear relation between peel stress and peel strain (Eq. (4.4.10)) was ad-

equate. Since the interlaminar shear strengths of most composite laminates tend to be

significantly higher than 6000 psi, Hart-Smith chose to use an elastic-perfectly plastic

adhesive model to relate transverse shear stresses to transverse shear strains.

Use of an elastic-perfectly plastic adhesive model is beyond the scope of this

study. Instead, a simpler, more approximate approach will be taken. A"knockdown"

factor will be applied to the transverse shear stresses of Eqs. (4.4.18) and (4.4.19) to
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account for the shear stress relief afforded by nonlinear material behavior in the ad-

hesive. An approach used by Corvelli 98, which yielded good correlation with exper-

imental results, involves reducing the shear stress concentration factor in single-shear

lap joints, calculated using a linear elastic analysis, by the ratio of the adhesive secant

shear modulus to its initial tangent modulus. The stress concentration factor, K, is the

ratio of the peak shear stress occurring at a joint edge to the nominal shear stress cal-

culated by dividing the shear load applied to the joint by the bond area. CorveUi re-

duced Ke, the stress concentration factor calculated using a linear elastic analysis, to

Kp, the estimated stress concentration factor accounting for adhesive plasticity using

the relation

K, = I + (K.- 1)_. (4.4.72)

where G,ec is the adhesive secant shear modulus and Gt,, is the initial tangent shear

modulus. In the case under consideration here, the nominal shear stress is very small

since, unlike the case of a single-shear lap joint, the ring flange/cylinder skin joint con-

sidered in the present study transmits a very small net shearing force. Recognizing that

the nominal shear stresses in Eq. (4.4.72) are small, the peak "elastic" and "plastic"

adhesive shear su'esses are related by a simple "knockdown" factor. This "knockdown"

factor for the transverse shear stresses of the present study is G,ec/Gto,. CorveUi used

0.29 for this ratio. This value will also be used in the present study.
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Chapter5

BUCKLING ANALYSIS

5.1 SolutionMethods

The buckling problem generally involves the solution of a set of linear, homo-

geneous partial differential equations and the satisfaction of a set of homogeneous

boundary conditions. For example, the homogeneous equations derived by Booton 3s,

Eqs. (2.85) and (2.86) of ReL 35, are the stability equations for imperfect, anisolropic

cylindrical shells subject to combined loads. For the cylindrical shell and annular plate

structures considered in this study the solutions to the partial differential equations

must be periodic with respect to the circumferential coordinate _2; hence, these partial

differential equations can be reduced to a set of ordinary differential equations using

the Fourier series. If for a specified load (assumed here to be characterized by a single

parameter ,_ as will be described later in section 5.5) F(_], _2; _,) represents a typical

solution to the stability equations, then F can be written in the form

oo n_2 +/2(_];A) n_2, (5.1.1)F(_I,_2;_) = _[/1(_; _)si. T _ T j
n=0

where _ is the axial coordinate of the cylindrical shell or the radial coordinate of the

annular plate, _2 is the circumferential coordinate, and R is the radius to the origin of

the (_1, _2, _s) coordinate system (the middle surface of the ring-stiffened cylindrical

shell). Since stability equations are linear and homogeneous, then each term of Eq.

(5.1.1) must satisfy these equations individually; hence, for a specified number of cir-

cumferential waves, ni E {na, n2,..., n¢}, where t is the total number of different

values of n considered in the analysis, the solution F can be written for each ni

F(n,;_I,_2;_,)=/_(_a;,_) " -,_2 n_2_-_ + f2(_; _)¢o_--_--. (5.1.2)

Substitution of Eq. (5.1.2) into stability equations ( such as Eqs. (2.85) and (2.86) of

ReL 35) eliminates the _2 dependence of the problem and reduces the buckling prob-

lem to the solution of a set of ordinary differential equations in _1 ( see Eqs. (2.101)
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through (2.104) of Ref. 35). Upon integration of these ordinarydifferential equations,

a set of boundary conditions must be satisfied to determine the constants of integration.

Since these boundary conditions are homogeneous, Eq. (5.1.2) is the only term from

the original Fourier series (Eq. (5.1.1)) needed for a complete solution of the buck-

ling problem. Satisfaction of the boundary conditions leads to an algebraic eigenvalue

problem of the form

[B(n; A)]{C} = 0 (5.1.3)

where [B(n; A)] containsthe solutionsto the stabilityequationsevaluatedat boundary

points, ni is a specified circumferential wave number, A is a parameter related to the

imposed loads and {C} is a vector of constants. If the order of [B] is M-by-M then M

discretevaluesof A and and correspondingvectors{C} existthatresultin a nontrivial

solutionof Eq. (5.1.3).For the specifiedvalue of hi,the lowest value of A (defined

here as A,) isthe criticalload associatedwith thatspecifiedvalue of n_ and {C} can

be used along with Eq. (5.1.2)to determine the mode shape associatedwith A,. The

buckling load (At,.)of the structureisthen

Ac,. -- min(A,) n = 0,1, 2, ..., nt (5.1.4)

and the mode shape associated with min(A.) is the buckled mode shape of the slruc-

ture. If nor is the circumferential wave number associated with A,,., then this mode

shape is

nerO2

F(nc,; _,, _2; A_,.)= fl(_l;Acr)sin nCr_2--_+ f2(_1 ; Acr) cos --.R (5.1.5)

For both the cylindrical shell and the annular plate, the stress resultants of the pre-

buckled equilibrium configuration vary with the coordinate _; hence, the equations

governing the stability of this equilibrium configuration have variable coefficients,

making it very difficult to solve these equations in closed form. Hence, a numerical

method must be chosen to solve the buckling problem. Many numerical techniques
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existthatcan be used to integratethe ordinarydifferentialequationswhich character-

ize the buckling problem for a shellof revolution.One of the earliestmethods used

was finite differences (see, for example, Budiansky and Radkowski99). Since the set

of ordinary differential equations, generally of order four or higher, can be written as

a system of first order equations, attempts were made to apply a forward integration

technique such as Runge-Kutta integration or one of the predictor-corrector methods to

solve this first order system. It was thought that such an analysis would be more effi-

cient since it would alleviate the high computer storage requirements associated with

the method of finite differences. Unfortunately, it was discovered that loss of numerical

accuracy attributed to the exponential growth of the solutions to the first order system

of equations limited the distanceover which a forward integrationcould be performed.

Kalnins97 and Cohen ]°9'I°Isolved the problem by breaking up the domain of integra-

tionintosegments and restartingthe forward integrationprocedure at the beginning

of each segment. This numerical method isknown as the "Multi-segment Technique"

or "ParallelShooting". Booton 3s used thismethod to determine theoreticalbuckling

loads of imperfect,aniso_opiccylindricalshellssubjectto combined loads. A tech-

nique known as the "field method", developed by Jordan and Shelley 1°2, where the

governing equations are re.configured in order to eliminate the unbounded growth of

the solutions to these equations, was successfully used by Cohen 1°s'1°4 to solve highly

complex branched shell problems without having to discretize the domain of integra-

tion of the governing equations, resulting in increased computational speed and signifi-

cant savings in computer storage.

No matter which method is chosen to integrate the stability equations, the solution

of an algebraic eigenvalue problem like Eq. (5.1.3) for _. generally accounts for the

greatest expenditure of computer processing time, thus driving the efficiency of the

entire algorithm. In general, for a specified value of the circumferential wave number,

rti, )_. can be found from the following nonlinear equation

= 0 (5.1.6)
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where det[B(ni; A)] is the determinant of the [B(ni; A)] matrix in Eq. (5.1.3). In the

classical buckling analyses of plates and shells, the prebuckling problem is solved us-

ing the techniques of linear structural analysis so that [B(n; A)] is a linear function of

the load, represented by )_; hence, F-xl. (5.1.3) can be written as

{[B,(n)I + A[B2(-)]}{C} = {0} (5.1.7)

yielding a linear algebraic eigenvalue problem for the )t and their associated {C}. If,

on the other hand, [B(n; A)] is a nonlinear function of A, as is the case in this study,

solution of F-xl. (5.1.3) becomes more complicated. One popular method, known as

determinant plotting, simply evaluates Eq. (5.1.6) for values of ), increasing incremen-

tally from some initial value which is known to be less than An until a change in the

sign of the determinant is observed indicating that the determinant has passed through

zero. Booton s5 used a generalized Gaussian elimination technique, sometimes referred

to as "Potter's method ''*°s, involving submatrices of [B(n; A)] to reduce the search to

one of finding zeros of the determinant of a much smaller submatrix known to posses

an the zeros of the determinant of the original matrix [B(n; A)]. This eliminated the

numerical overflow or underflow problems associated with calculating the determinants

of large order matrices. While the determinant plotting technique is very straightfor-

ward to implement, it is not suited for implementation into an automated search algo-

rithm for A,. It was observed during the development of the theoretical analysis of this

study that while det[B(n; A)] does reach zero when ,_ - ,_., the determinant does not

change sign when the )_ > )_,. As was confirmed using the STAGS l°e finite element

program, all of the values of A leading to nontrivial solutions of Eq. (5.1.3) have two

different mode shapes associated with them. In other words, all the eigenvalues of Eq.

(5.1.3) are repeated once. This means that as A is incremented past a critical value (a

value resulting in a zero det[B(n; A)]), two critical values of )t are actually passed re-

sulting in two simultaneous sign changes of the determinant for a net change of zero.

Without a sign change in the determinant, an automated search for A, is very difficult.

Upon plotting the two mode shapes associated with the repeated eigenvalues, it was
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observed that the only difference between the two was a phase shift in the circumfer-

ential wave pattern. This could be caused by the fact that, in addition to Eq. (5.1.2),

another possible solution to the stability equations is

.,.
F(-; A) ,,jsm -'R-+/1(T1; A)¢o 

While it was not confirmed that this is indeed the reason for the repeated eigenvalues,

it would produce two mode shapes that differ only by a phase shift. Booton's analy-

sis does not suffer from the problem of these repeated eigenvalues because, by taking

advantage of symmetry to reduce the domain of integration across the length of the

shell by half, he eliminated Eq. (5.1.8) as a possible solution. The fact that values

of A leading to a zero determinant of [B(n; A)] tend to be very closely spaced forced

Booton to use very small increments in A to avoid passing two neighboring eigenval-

ues. Without a good initial estimate of An, the determinant plotting method in this case

could be computationally expensive.

As an alternative to determinant plotting, another technique proposed for the solu-

tion of Eq. (5.1.6) for critical values of A is Newton's method. Application of New-

toes method is hampered, however, by the behavior of the function det[B(n; A)].

As described in the paper by Blum and Fulton _OT,as A approaches a critical value,

det[B(n; A)] is not a monotonically decreasing function. Instead, det[B(n; A)] behaves

more like a step function in the vicinity of a critical value of A; hence, unless a very

good initial estimate of the desired critical value is available ("very good" in this case

being an initial value of A within five percent of a critical value or less), it is highly

likely that Newton's method will converge to an eigenvalue that is greater than A, if

the method converges at all, rendering the method unreliable. Keller _°s presents ways

of deriving functions which are smoother and more well-behaved than det[B(n; A)]

that have all the same zeros as det[B(n; A)]. These methods were also evaluated dur-

ing the course of this study. While the functions proposed by Keller were more weU-

behaved than det[B(n; A)], the close spacing of the critical values of A which is a
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characteristic of shell buckling problems still made it too likely that application of

Newton's method would result in convergence to an eigenvalue, )_, greater than _,.

For the case where [B(n; _)] is a nonlinear function of ),, greater success has been

achieved by applying Newton's method to Eq. (5.1.3) rather than Eq. (5.1.6). If ,_

represents an estimate of _,, such that )J < X,, then a better estimate, )_+1 can be

found by solving the linear eigenvalue problem (see Eq. (3) of Re/'. 109)

{[B(.; + [b(.; = {0} (5.1.9)

for the correctionterm A)j, which isthe smallesteigenvalueof Eq. (5.1.9),where

[/_(n;),i)]isthe firstderivativeof [B(n; ),i)]with respectto _. An improved estimate

of _,.(,_i+i)isfound by

_i+I = _ + rA,_i (5.1.10)

where 0 < r _< 1 to insure that ,_i < ,_, after each iteration (see Sun110). Itera-

tions continue until )j+x is sufficiently close to _ to assume convergence has been

achieved.

In order for the technique of solving the nonlinear buckling eigenvalue problem

as a series of linear eigenvalue problems to be efficient, Eq. (5.1.9) must be solved

very rapidly. A number of computer programs are available to do this. The most nu-

merous and efficient programs have been written to solve linear eigenvalue problems

such as Eq. (5.1.9) where both [B(n; ,_i)] and [/}(n; ,_i)] are symmetric matrices and

one of them is positive definite so that all of the eigenvalues, A,_, are real numbers.

When neither [B(n; ,_i)] nor [/}(n; ,_i)] is positive definite and/or one of the matrices

is not symmetric, then complex values of A,_ may exist (see Meirovitch __1) requiring

a more general (and time-consuming) algorithm to solve the eigenvalue problem. It

was observed during the course of this study that such complex values of A,_ occurred

when the buckling problem was posed using the mixed stress/displacement formula-

tion employed by Booton 3s and Sun 11°. These complex values of A)_ do not have a

clear physical meaning. Posing the buckling problem using a pure displacement for-

mulation yields symmetric matrices for both [B(n; ,_i)] and [/}(n; ,_i)] of Eq. (5.1.9).
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If _ is chosen so that A_ < A,,, then [B(n; A_)] being positive definite eliminates the

possibility of complex values of AA. During the present study, it was concluded that

the loss of efficiency in solving Eq. (5.1.9) caused by the existence of complex val-

ues of AA eclipsed the gains in efficiency reafiT_ by reducing the number of primary

unknowns from three to two using the mixed stress/displacement formulation. Hence,

a pure displacement formulation, for which a well-documented stability theory related

to the second variation of the total potential energy exists, was chosen for the present

study.

Along with the pure displacement formulation of the buckling problem, the nu-

merical technique chosen to solve this problem in the present study is the finite ele-

ment method. The finite element method was chosen since a limited amount of com-

puter storage was not a critical issue and the method can be formulated directly from

variational principles without the need for an explicit derivation of the stability equa-

tions. What follows in section 5.2 is the derivation of the finite element model of the

second variation of the total potential energy for a cylindrical shell element. The deri-

vation of the finite element model of the second variation of the total potential energy

for the annular plate element appears in section 5.3. Assembly of the elemental finite

element models into the global finite element model for the ring-stiffened cylinder is

outlined in section 5.4, and the application of Trefftz criterion which yields the nonlin-

ear buckling eigenvalue problem is outlined in section 5.5.
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5.2 Finite Element Model of The Second Variation Of The

Total Potential Energy of a Laminated Cylindrical Shell

The total potential energy of a thin, imperfect cylindrical shell element subject to

combined loads is

where

and

1

I O'II 1
{_}= _2

_2

{e-eP}= e_ e_
712 _

(5.2.1)

(5.2.2)

(5.2.3)

where a 0 is a stress with respect to the _i_j load oriented or global coordinate direc-

tion (not to be confused with the material or local coordinate direction), eij is a to-

tal strain with respect to the _j coordinate direction, Illo.,_ is the potential energy of

the interactive loads between elements and any externally applied loads and e_ is an

initial strain with respect to the _i_j coordinate direction arising from the initial geo-

metric imperfection. It is assumed that the unloaded, imperfect cylinder is stress-free;

furthermore,the imperfectionisassumed to be in the form of an axisymmetric radial

displacement,Wo, where

w. = w.(_l) (5.2.4)

and the nondimensional functionalform of to. isgiven in Eq. (4.1.25).Settingthe

cone angle _ equal to zero (seeFig. 3.3.1)inEqs. (3.3.1.5)through (3.3.1.9),the

strain-displacementrelations from DMV theory are

(5.2.5)

e_2= q2(_1,_) + _3_(_1, _) (5.2.6)
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(5.2.7)

where

a._ .; :(o_;__

(5.2.8)

(5.2.9)

(5.2.10)

_u_ (5.2.11)
gll "---'_12

O2u; (5.2.12)
,_22= a::

_ 02u; (5.2.13)

and all of the terms in F_.qs. (5.2.5) through (5.2.13) have been defined in section

3.3.1. The initial swains due m fl_e geomclric imperfection can he found by setting

u_ --Wo and u_ = u_ ----0 in Eqs. (5.2.8)lhrough (5.2.13),yielding

(5.2.14)

where

Wo (5.2.1s)d_= -_
q,_'P= 0 (5.2.19)

O2w° (5.2.20)

,_ = 0 (5.2.21)
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_ = 0 (5.2.22)

The displacement u_ in F-xls. (5.2.8) through (5.2.13) is the radial displacement

of the middle surface of the perfect cylinder. Replacing u; in these equations with

u; + too so that u_ now represents the radial displacement of the middle surface of

the imperfect cylinder, then substituting Eqs. (5.2.5) through (5.2.22) into Eq. (5.2.1)

gives

where

r[ = _ . 2 {O" } T { {_-o} -I- _3 {_} } d_3d_2d_l -I- I_Io.d

{_'}= _
_72

K12

_2 = ,_2= _ + R + _ \ _7

= + +

(5.2.23)

(5.2.24)

(5.2.25)

(5.2.26)

(5.2.27)

(5.2.28)

02u; (5.2.29)

02u; (5.2.30)
_22 =_22 = 0_2

_o2u;
_2 = _2 = -20_ 2• (5.2.31)

and the _/j and _ij are shell middle surface mechanical strains and curvatures with

respect to the _i_j coordinate directions, which are zero in the unloaded structure. Inte-

grating Eq. (5.2.23) with respect to _3 yields

1_ / {{N} TII -- 5 , {_o} jr {M}T {_}} d_2d_ + IIio,,d (5.2.32)
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where, as in Eqs. (3.3.2.2) and (3.3.2.3)

Nm rm J
d_ (5.2.33)

and

{M}= M22 = _3 v22 a_3
M_2 n2

(5.2.34)

are stress resultants and stress couples and the superscript T indicates the transpose of

a matrix or vector. Eq. (5.2.32), written in nondimensional form becomes

where the overlined quantities are nondimensional quantities that are defined in Ta-

ble I. Also defined in Table 1 are the nondimensional membrane stiffnesses Anm, the

nondimensional membrane-bending coupling stifinesses Brim and the nond/mensional

bending stiffnesses Dnm used in the nondimensional form of the stress-strain equations

(Eq. (3.3.2.1)) given by

v_r]l i

i
N12

7{_22

-3_11_'12 _1_ _11 :_12:_1_
_12 _22 A-. B-'21_'22 _2.
_'1_ _'2. A. _'_! _'. _'.
_'11 _21 _'_1 _11 _12 _1_
_'12 _22 _'_2 _12 _'22 _'2_

_22,_,,O

_2 ,-[e] _12 ,
_11 _11
_=22 _22

(5.2.30)

The prebuclded equilibrium configuration can be determined by setting the first varia-

tion of the total potential energy equal to zero. This leads to

_'-- _ _={{"N}T {_'_'°}'_c {-'M}T {_}}d'_2d_I "_'_io=d=O
(5.2.37)

where 5 is the variational operator. The equilibrium configuration resulting from Eq.

(5.2.37) is stable if the second variation of the total potential energy is positive for all
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kinematically admissible displacement fields. The second variation can be written (in

nondimensional form) as

p m

62_'= I

(5,2.38)

where (N'_) and {'_ } are buckling stress resultants and stress couples given by

_12 ,

(5.2.39)

Taking two variations of the swain-displacement equations (Eqs. (5.2.26) through

(5.2.31), substituting the resulting expressions into Eq. (5.2.38), and simplifying 52_"

using Eq. (5.2.37) results in

'_11 'x _ _12

1

T (oe,'/a_',)_ , ]
, (_'/_,) + _ ,

(_,'la-_,) + (a_,'la-_,)J

-(o'e_'la-_,') I ]I
-(o_e_,la_,') , [ d_-_d_,

-2(a,_'lO_,a_) J
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T
Nil

N22
1

N12

0

• I JE?

i

!

Nl2

T

I'

+62i'[zo,d (5.2.40)

where O' indicates that () is a buckling quantity and unprimed quantities are deter-

mined from the prebuclding equilibrium configuration. Any derivatives of a prebuck-

ling quantity with respect to _l have been dropped due to the assumed axisymmetric

response of the prebucided equilibrium configuration. As mentioned in section 5.1, due

to the periodic geometry of the cylindrical shell, the nondimensional middle surface

buckling displacements ff]',_z' and if3' and the nondimensional buckling stress resul-

tants and stress couples _ll,_l_i, _l,, _ffii, ]lTffl, and _12 can be written in terms of

a Fourier series in the circumferential coordinam, _2. In other words

u,'

(5.2.41)
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Nll

_22 _ -.-

_,(L)

_,(L)

sin _2 +

N----_2CL)

cos_ (5.2.42)

, M'_2 ,-- :_71(_1) sin_ + M--Y2(_I) cos_ 2 (5.2.43)

where

nL (5.2.44)#=-_-

n is a circumferential wave number, L is the length and R is the middle surface radius

of the cylinder. Substituting Eqs. (5.2.41) through (5.2.43) into Eq. (5.2.40) and per-

forming the integration with respect to the nondimensional circumferential coordinate,

72, results in

62H" -" "_" _, { I "{fl) }T{f2} _, }T }

[ {ekl} {e/l}
{ek2} } + { {fl} { } d_1{f2} Tel2}

+ _iV,, + + :_#' (W,W, +, N "NN
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where

ek11 --
d_t

ek12 = -_V2 + _W1

_.: _l_t J aft

e112 -'- 0

ek14 =
d_I

ek15 -- _2W1

dW
ells - - [a,_--_1+ _la(,J _]3];]72

e114 = 0

ells --- 0

dW

ek2x --
d_t

elle = 0

el22 ----0

(5.2.40)

,tf,

ek24 =
d_t"

ek25 = _2W2

tt(t J

e124 = 0

e125 = 0

ek2e "- 2B d_--_
-- '- d_, el2e = O.

u

fll = NXI

flz = NYI

f13 = _R'V_

f14 = MXI

/Is = M"M-71

f21 ---_::

f22 -" NY2

f2s = NX-----"X-72

f24 = MX2

f25 = MY2

(5.2.47)

fle = MXY1 f2e = MXY2

and ekli, ekl2, elli, el2i, fli and f2i are the ith row elements of {ekl}, {ek2},

{e/l}, {el2}, {fl} and {f2} respectively. By substituting Eqs. (5.2.41) through (5.

2.43) into Eq. (5.2.39), it can be shown that

{{fl}} T {{ekl}}T[ [c] [O] ]T+{ {eI1} }T [[ c] [O] ] T{f2} -- {ek2} [01 [ c ] {el2} [0] [ c ] (5.2.48)
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For a single finite element (see Fig. 5.2.1), the buckling displacements _1, _2,

VI, V2, W1 and W_ are writtenas

U'1(_1)- {u1}T{_l(_l)}

_2(_1) "- {u2}T{@2(_l)}

Vl(_l)-- {v1}T{_1(_l)}

V2(71)= {V2}T{_2(_I)}

W,(71) = {W1}T{al(71)}

W_(71)= {w2}T{_(L)}

(5.2.49)

w_re{#I(L)},{¢_(L)},{#I(L)}, {_(71)},{_(7_)}, and{n_(L)}arevectors

of polynomials whose dimensions depend on the type of interpolation employed and

{UI}, {U2}, (VI}, {V2}, {W1} and {W2} are vectorsof nodal buckling displace-

ments and rotations.The domain of 71 in thiscase isunderstood to be from _ to

_+'- {f_1(71)}, and {f/_(71)} are Hermite polynomial interpolation functions of or-

der three and {@I(_i)}, {@2(71)}, (*I(71)) and {'5(71)} are Lagrange polynomial

interpolation functions of at least order one. Substituting Eqs. (5.2.48) and (5.2.49)

into Eq. (5.2.45), the second variation of the nondimensional total potential energy for

a single cylindrical shell element and a single specified circumferential wave number,

n, can be written in terms of a stiffness matrix, [Ke(n)], which is not a function of the

applied loads, and a geometric stiffness matrix, [K_(n; A)] which is a function of the

applied loads indicated by the load parameter A. The matrices [Ke(n)] and [K_(n; A)]

along with the finite element model of the second variation of the nondimensional total

potential energy appear in Appendix C.
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5.3 Finite Element Model of The Second Variation Of The

Total Potential Energy of a Laminated Annular Plate

The development of the finite element model for the second variation of the total

potential energy for the laminated annular plate follows the same steps as the develop-

ment of the model for the cylindrical shell; however, initial geometric imperfections in

the annular plate are ignored. The total potential energy for the perfect annular plate

element is

where

and

(5.3._)

711 }
{if}'- Cr22 (5.3.2)

Ell }
{e} = ¢22 (5.3.3)

3't2

where _j is a stress with respect to the _i_j coordinate direction, _=j is a strain with

respect to the _i_j coordinate direction and Ilio== is the potential energy of the inter-

active loads between elements and externally applied loads. Setting the cone angle _b

equal to ninety degrees (see Fig. 3.3.1) in Eqs. (3.3.1.5) through (3.3.1.9), the strain-

displacement relations arc

_11= _h(6,6) + 6_1(6,6) (5.3.4)

_== _h(6,6) + 6_=(6,6) (5.3.5)

where

';' = _ + 2 k a6 )

(5.3.6)

(5.3.7)
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E_2 =

{ 1 [(RR_ -_fa ) _'2+0u_ R u___fa] 2}
(5.3.8)

R Ou_ Ou_ u_ + R Ou_Ou_ (5.3.9)
"rG - E- _10_2 + _ + R- _--_ ]z - _10_1 0_2

O=ul (5.3.10)
/_II -"--'_--1

R )i 01ul 1 0u I (5.3.11)

2R O_ul 2R o_ (5.3.12)
xi2 = R- _l 0_i0_i - (R- _l)i 0_2

and all of the terms in Eqs. (5.3.4) through (5.3,12) have been defined in section

3.3.1. Note that an extra noulincar term (in { }) has been added in Eq. (5.3.8). This

is necessary in order to represent a buckled mode shape of the annular plate dominated

by in-plane buckling displacements rather than normal buckling displacements. Such

a situationwould ariseifthe radialdepth of the platewas so small thatthe structure

buckled _ a curved beam ratherthan a fiatplat_.SubstitutingEqs. (5.3.4)through

(5.3.12)intoEq. (5.3.1)and integratingwith respectto _3 gives

1"I= 7 , 1_0}+ {M}T {'_°}}(X- -ff)d_2d_,+ 1I,ood
(5.3.13)

where, as in F..qs. (3.3.2.2) and (3.3.2.3),

{N}= N,2 = o22 a_
Hi2 = _'12

(5.3.].4)

and

L
M12 rl2

(5.3.z5)
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are stress resultants and stress couples and the superscript T indicates the transpose of

a matrix or vector. Eq. (5.3.13) written in nondimensional form (see Table 1) is

-- 1_ _ L

where (-) indicates that ( ) is a nondimensional quantity defined in Table 1. Also de-

fined in Table 1 are the nondimensional membrane stiffnesses 7.m, the nondimen-

sional membrane-hending coupling sfiffnesses B,,m and the nondimensional bending

stiffnesses D--',,, used in the nondimensional form of the stress-strain equations (Eq.

(3.3.2.1)) given by

'_11 _

N12

Mn

M22

"Tu _12 716 _u _12 _16

7,, _. 7. B%1 B%2 B%,
B,I Bzl B--61 D--n D12 DI,

_,2 B22 B--s2 D,2 D'-22 D--2.

_22 _22
J_.O _0

/¢22 /_22

, /¢12 , _ /¢12 ,

(5.3.17)

Note that since the individual lamina of the plate are assumed to be monoclinic with

respect to the midplane of the plate defined in a cylindrical coordinate system _ther

than a cartesian coordinate system the stiffnesses are constants with respect to (_1, _2)-

Following the same procedure outlined in section 5.2, the second variation of the total

potential energy written in nondimensional form is

L-
(5.3.18)

where {_ } and {_'} are nondimensional buckling stress resultants and stress couples
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given by

(5.3.19)

The second variation of the nondimensional total potential energy analogous to Eq.

(5.2.45) for the cylindrical si_ll is obtained as follows: take two variations of the

swain-displacement equations (Eqs. (5.3.7) through (5.3.12) and substituU: the result-

ing expressions into Eq. (5.3.19). Then substitute for the nondimeusional midplane

buckling displacements _1',_2' and _3' and the nondimensional buckling stress re-

series representation

(5.3.20)

/
NWX,(_,)

"NWXY,(_,)

sinkS2+ R-WY,(L)

NWXY,(_,)

(5.3.21)
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M--'_-11" { MWXI('_I)

M--'_-22, _ M"M-WYI('_I)

"-_12 MWXYI('_1)

_i,,Z_,+ _-W-_,(_,) _o._Z[_(5.3.22)

MWXY2('_I )

with

nL (5.3.23)/_=W

where n is a circumferential wave number, L is the length and R is the middle surface

radius of the cylinder to which the annular plate is attached (see Fig 3.3.1)).

For a single finite element (see Fig. 5.3.1), the buckling displacements _z,

UW-"-"2,_,, VW2, W-----W'I,and _-"W2 are writtenas

V'W_(_,) = {vw2}r{_(_,)}

w---WI(_,)= {wwl}rT_x(_,)}

WW_(_,) = {ww2}r{_(_,)}

_1(_'1) _ {Uw1}T{'_I('_I)}

UW2(_,) = {Vw2}T{_2(_,)}

V-W,(_) = {VW1}T{_,(_,)}

(5.3.24)

where{_,(_)},{¢_(_,)},{v,(_,)},{v_(_,)},{a,(_,)},and{a_(_,)}_ v_-

mrs of the same polynomials used in FXl. (5.2.49) and {UW1}, {UW2}, {VW1},

{VW2}, {WW1} and {WW2} am vectors of nodal buckling displacements and ro-

tations. The domain of _1 in this case is understood to be from _'_ to _+1. As was

the case for the cylindrical shell, the second variation of the nondimensional total po-

tential energy for a single annular plate element and a single specified circumferential

wave number, n, can be written in terms of a stiffness matrix, [Ke(n)], which is not

a function of the applied loads, and a geometric stiffness matrix, [K_(n; A)] which is

a function applied loads indicated by the load parameter A. The matrices [Ke(n)] and

[K_(n; A)] along with the finite element model of the second variation of the nondi-

mensional total potential energy appear in Appendix D.
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5.4 Finite Element Model of the Second Variation Of The

Total Potential Energy of the Ring-Stiffened Cylinder :

Assembly of Global Stiffness and Geometric Stiffness Matrices

The finite element model of the second variation of the nondimensional total po-

tential energy (]]) of the ring-stiffened cylindrical shell for a specified value of the

circumferential wave number, n, is formed by adding together the contributions to

from each individual finite element, _'_. Using Eqs. (U.1) from Appendix C and

(D.1) from Appendix D, This sum can be expressed as

N

2_--------G

• 1

N

ezl

• "R e T e 2-_e

+ -z-(w } [xb(-; + 6 (5.4.1)

where [Ke(n)] is an elemental stiffness matrix and [K_(n; A)] is an elemental geo-

metric stiffness matrix, N is the total number of finite elements in the ring-stiffened

cylinder and 62_tto, d contains terms associated with the boundary conditions at the

ends of each element. Compatibility of the nodal buckling displacements and equilib-

rium of the corresponding nodal buckling forces and nodal buckling moments at node

points where elements are joined are enforced by assembly of the element stiffness and

geometric stiffness matrices into the corresponding global (or structural) stiffness and

geometric stiffness matrices (see Reddyl°°). This assembly, along with the imposition

of the boundary conditions at the ends of the cylinder and the inboard edges of the at-

tached ring webs, results in the val_hing of the term ___1 2---"6 rr ..d in (5.4.1). m

order to minimize the bandwidth of the resulting structural matrices, the element matri-

ces are first reorganized so that the nodal buckling displacements and rotations ({We}),

for the cylinder elements (see section 5.2) can be written as

100



{we}T-{u1 e V1 e W1 • R1 • U2 e V2 • W2 e

R2" {Ul m} {V1 m} (U2 m} {V2 'n} U1 "+1 V1 "+1

WI,+ 1 RI'+ 1 U2 "+1 V2 "+1 W2 "+1 R2"+1} T (5.4.2)

and the nodal buckling displacements and rotations for the annular plate elements (see

section 5.3) can be written as

{we}T- {UW1 ` VWI" WWI" RWI" UW2 e VW2" WW2"

RW2" {UWl'} {VWl'} {VW2"} {VW2"}

VWI,+ 1 WWI'+ 1 RW1 "+1 UW2 "+1 VW2 "+1

WW2,+I RW2e+I }r (5.4.3)

where the superscript e indicates quantifies at initial nodes of the element, e + 1 in-

dicates quantifies at the final node of the element, m indicates quantities at midlength

nodes of the element used for Lagrange quadratic or cubic interpolation of the tangen-

fial (or in-plane) buckling displacements and if

711 = -dITl(_l) and
dL

_2 -- -_2(_1) (5.4.4)

are nondimensional buckling flexural rotations in the cylinder (see Eq. (5.2.41)) and

-dW---W1 (_1) -- -dW'-'W2(_I) (5.4.5)
RW1 = d-_l and RW2 = d_ 1

are nondimensional buckling flexural rotations in the ring web (see Eq. (5.3.20)) then

R1 e and R2 e are nodal flexural rotations in a cylinder element used in the Hermite

cubic polynomial interpolation of W1(_1) and ]_V2(_1) respectively and RW1 e and

RW2 e are nodal flexural rotations in an annular plate element used in the Hermite

cubic polynomial interpolation of W'WI (]1) and W--_2 (_1) respectively (see Eqs.

(5.2.49) and (5.3.24)). For both cylinder and annular plate elements, nodal buckling
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force and moment quantities, {Fe}, are related to nodal buckling displacements and

rotations, {We}, by the expression

{F • } = [[K el + [Kb]]{We}. (5.4.6)

where, for the cylinder element (see Fig. (5.2.1)),

{Fe}T=_{P1 e S1 e QI" MI" /'2" $2" Q2 e

M2 e {Pl"} {S1 m} {P2"} {$2"}

Qle+ 1 Mle+ 1 p2e+ 1 S2e+ 1 Q2 e+1 (5.4.7)

and for the annular plate element (see Fig. (5.3.1)),

{Fe}T=_{PW1 • SW1 • QW1 • MW1 • PW2 • SW2 • QW2 •

MW2 e {PW1 m} {SW1 m} {PW2 'n} {SW2 m} PW1 e+*

SWle+ 1 QW1 e+l MW1 e+l PW2 e+l SW2 e+l

QW2e+, MW2e+, }T (5.4.8)

Fig. 5.4.1 shows a typical ring web intersecting the cylindrical shell. It is as-

sumed that the outboard edge of the web is connected to the middle surface of the

cylindrical shell by a small rigid link of length ecc representing the small offset created

by the thickness of the ring flange and the small fillet radius where this flange connects

to the web. In order to assemble the element matrices of the two cylindrical shell ele-

ments joined at points Pc in Fig. 5.4.1 with the annular plate element having its initial

end at point Pw in Fig. 5.4.1, compatibility of the nodal buckling displacements and

rotations and equilibrium of the nodal buckling forces and moments at Pc must account

for the eccentricity of Pc from 1:',, (ecc). Since the offset, ecc, is a rigid link, buckling

displacements, rotations, forces, and moments at P,,, can he written in terms of buck-

ling displacements, rotations, forces, and moments at Pc if the proper transformations

are applied to the quantities at Pc that account for ecc and the different local coordi-

nate systems used for the cylindrical shell elements and the annular plate elements.
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Transformationof the nondimensionalbucklingdisplacementsandflexural rotationsat

the outboard edge of the annular plate, written in terms of the annular plate local co-

ordinate system, into the corresponding set of nondimensional buckling displacements

and rotations at the middle surface of the cylindrical shell, written in terms of the local

cylindrical shell coordinate system, is achieved by using

(_.,'),,,,,b=- _ (_,')o,,r (5.4.9)

(,,_'),,,b= (_l')c,z+ _ __((o_,'1o-_2))_,,

(,,_,).., = (_) (_,')o.,+ __ ((o_,'/o_,))o.,

(( / _,)),,,._ ' o_

(5.4.1o)

(5.4.11)

(5.4.12)

where L is the length of the cylinder and t, is the total thickness of the cylindrical

shell (not including ring flanges). The subscript web indicates buckling quantities at

the outboard edge of the annular plate written in the annular plate midplane coordi-

nate system and the subscript cyl indicates the corresponding buckling quantities at the

middle surface of the cylindrical shell written in the cylinder middle surface coordinate

system. Quantities with overbars indicate nondimensionalized quantifies defined in Ta-

ble 1. Substituting Eq. (5.3.20) through (5.3.22) into Eqs. (5.4.9) through (5.4.12)

and equating quantifies multiplying sin _2 and cos _2 results in

h--_'J(_) = IT.,] R---_'_(_) (5.4.13)
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where

[T_]-

0 0 -L/t, 0 0 0 0 0

o 1 o o o o -Lr-_/t, 0
t°/L 0 0 -ec'-'_ 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 -L/to 0

o o L_'_/t. 0 0 1 0 0
0 0 0 0 t,/L 0 0 -e--_

0 0 0 0 0 0 0 1

(5.4.14)

and R-'W: and 7_'W2 are defined in Fxl. (5.4.5). Substituting the finite element model

for the annular plate buckling displacements (Eqs. (5.3.24)) into Eq. (5.4.13) and or-

ganizing the nondimensional nodal buckling displacements and rotations as shown in

Eq. (5.4.3), the transformation of the nondimensional nodal buckling displacements

and rotations for the annular plate finite element to nondimensional nodal buckling dis-

placements and rotations at the middle surface of the cylindrical shell in the cylindrical

shell coordinate system is accomplished using Eq. (5.4.15) below.

{w'} _'_ = IT](W'} °_' (5.4.15)

Note that only quantities at the most outboard node of this annular plate element need

to be transformed, In Fxl. (5.4.15) web indicates nodal quantifies at the most outboard

node of the annular plate element in the annular plate coordinate system, cyl indicates

nodal quantities at the point of intersection in the middle surface of the cylindrical

shell in the cylindrical shell coordinate system and

[T,] [o1 [o1
[T]= [0] [/'] [01 (5.4.16)

[o] [o] [/1

where [2'1] is given in Eq. (5.4.16) and [/] is an identity matrix. It can be shown that

the nondimensional nodal buckling forces and moments, {F e }, from Eq. (5.4.8), at the

outboard node of the annular plate element can be transformed to corresponding nodal

quantities at the point of intersection in the middle surface of the cylindrical shell by

{F'F"= [Tlr {_}_.b (5.4.17)
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wl_m [2"]T is the transpose of the matrix defined in Eq. (5.4.16). Using Eqs. (5.4.15)

and (5.4.17) it can be shown that, for the annular plate element, [T]T[Ke][T] is the

transformed element stiffness matrix and [T]T[K_][T] is the transformed element ge-

ome_c stiffness matrix which can now be assembled into their respective global or

structural matrices.

Once all of the necessary transformations have been made and the s_uctural ma-

trices are assembled, boundary conditions at the ends of the cylinder and at the inboard

edges 0f-the ring webs must be imp. _e-cylinder en& are assumed to be clamped

while the inboard edges of the annular plates are assumed to be free. For the cylinder,

this may be stated mathematically as

' : -=: "....... _ _ : !,=i _: "

1 (5.4.18)at= = = = 0

Substituting Eq. (5.2.41) and Hqs. (5.2.49) into Eq. (5.4.18) results in

U1 _ = U2 i = V1 i - V2 i = W1 i = W2 _ - R1 i = R2 _ = 0 (5.4.19)

and

U1 ! - U2 ! -- Vl ! - V2 ! - W1 ! - W2 ! -- R1 ! - R2 ! - 0 (5.4.20)

where the superscript i indicates quantities at the initial node of the first cylinder el-

ement and the superscript f indicates quantities at the final node of the last cylinder

element. The free edge boundary conditions at the inboard edges of the ring webs are

= _,2 -- V11 = _/'11 = 0 at _1 -'- L w' (5.4.21)

wbem _,, is the nondimensional buckling radial stress resultant, _,_ is the nondi-

mensional buckling in-plane shear stress resultant V1_ is the nondimensional buckling

Kimhhoff shear stress resultant, _11 is the nondimensioaal radSal stress couple, Hw is

the radial depth of the web, and L is the length of the cylindrical shell. Following the

same procedure used to develop Eqs. (5.4.19) and (5.4.20), the boundary conditions
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at the inboardedgesof thering websin terms of nodal buckling forces and moments

defined in Eq. (5.4.8) are

VWl ! - PW2 ! = SW1 ! - SW2 ! - QW1 ! "- QW2 ! - MW1 ! - MW21 = 0

(5.4.22)

where here the superscript f refers to quantifies at the final node of the most inboard

annular plate finite element of a ring web.

Assembly of the element matrices and imposition of the homogeneous boundary

conditions of Eqs. (5.4.19), (5.4.20) and (5.4.22) results in the final form of the finite

element model for the second variation of the nondimensional total potential energy for

the ring-stiffened cylindrical shell given a specific value of the circumferential wave

number, n, and the load, ),

62_'(n;,_) = _ff-{W}r([g(n)]+[go(n;)Q]){W) (5.4.23)

where [K(n)] is the global or slructural stiffness matrix, [KG(n; ,_)] is the global or

structural geometric stiffness matrix and {W} is the global vector of nodal buckling

displacements and rotations.
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5.5 Formulation of the NonlinearBuckling Eigenvalue Problem

Stability of the prebuckled equilibrium configuration is guaranteed if ( [K(n)] +

[Ka(n; )0] ) in F-xl. (5.4.22) is positive definite. The loading which results in a critical

situation - where ( [K(n)] + [Ka(n; A)] ) first becomes positive semi-definite - can be

determined through the application of Trefftz's criterion

6(:ff(.;_))=0. (5.5._)

Substituting Eq. (5.4.22) into Eq. (5.5.1) results in

([K(.)]+ [Ka(.;_)]){w}= o. (5.5.2)

The global geometric stiffness matrix, [Ka(n; A)], is a nonlinear function of the

applied load; hence, Eq. (5.5.2) is a nonlinear algebraic eigenvalue problem. Nontriv-

ial solutions of this problem determine critical loads and associated mode shapes for

the specified value of the circumferential wave number, n. Given some initial loading

P° (axial compression), T ° (torsion) and p° (lateral pressure), it is assumed that the

structure is loaded to buckling so that P° and T ° retain their original proportion and

pO remains constant. In other words, the combined loading is defined by the constant

pressure, p°, and the load parameter A where

A= P/P° = T/T ° (5.5.3)

Newton's method is applied to Eq. (5.5.2) (see Eq. (3) of Ref. 106) necessitating so-

lution of a sequence of linear algebraic eigenvalue problems of the form

{[K(.) + Ka(.; _')] + a_[ka(.; _)]}{W} = {0} (5.5.4)

where 0 indicates differentiation with respect to A. AA is a correction to h i, the cur-

rent estimate of A, (see section 5.1), which approaches zero as as A approaches A,.
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In order to insure that Ai < A,, after each iteration, only a fraction of AA should be

added. In other words

)ii4-1 = _i __ I"A_ (5.5.5)

whcm 0 < r < 1 (sccSun1°7). Ithas been observed thatr = 0.5 isusuallyadequate

to insurethatA_+I does not exceed A,,.When Ai+I isclose to A_ to within a specified

tolerance,the iterationsstop.At thispointAi -- A,_and the {W} found from the last

solutionof Eq. (5.5.4)along with Eqs. (5.2.41)and (5.3.20)definethe relatedmode

shape. The smallestA,,,along with itscorrespondingmode shape,found over allval-

ues of n isthe buckling load and buckled mode shape of the ring-stiffenedcylinder.
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Chapter 6

OFTIMAL DESIGN _RI'I'HM

6.1Introduction

One objective of the present study is to design minimum weight (denoted by F)

generally anisotropic ring-stiffened cylinders loaded by combined axial compression,

torsion, and internalpressure. The cylinders are characterized by a set of design vari-

ables Xi (i = 1, 2, ..., n4_ where nd_ is the total number of design variables) that

define the geometry and the laminate properties of the shell. The design is subject to a

set of constraints to insure that the structure does not buckle under the imposed loads,

b
gj, j = 1,2, ..., n O, where ne_ is the total number of buckling constraints (several

buckling constraints on both the minimum buckling load and the buckling loads asso-

ciated with higher modes may be necessary in order to account for the possible occur-

rence of mode coalescence and mode switching), and that the prebuciding stresses at

selected locations in the structure do not exceed their allowable limits. The stress con-

straints are represented by g_, k = 1, 2, ..., nw,, where he, is the total number of stress

constraints. A set of lower bounds X_ and upper bounds X_' on the design variables

are also specified. Mathematically the optimal design problem is stated as

minimize F(X_)

8> 0subject to gj _

9 >o

i = 1, 2, ..., njt,

j = 1, 2, ..., nob

k = 1,2, ..., he°

(6.1.1)

In the present study, both the objective function, F, and the behavioral constraints

g_ and g_ of Eq. (6.1.1)are generallynonlinearfunctionsof the design variables,Xi;

hence,Eq. (6.1.1)isa nonlinearmathematical programming (MP) problem thatneeds
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to be solved using the methods mentioned in section 1.3.3. Use is made of both an in-

direct MP technique, described in section 6.2, and a direct MP technique, described in

section 6.3, in the present study. In section 6.4, the various design variables used in the

present study are discussed. Sections 6.5 and 6.6 contain a formulation of the stress

and buckling constraints respectively. Section 6.7 contains a brief outline of the sensi-

tivity analysis. A discussion of the criteria used to establish optimality of a candidate

design is presented in section 6.8.
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6.2 Quadratic Extended Interior Penalty Function Method

The indirect mathematical programming technique used in the present study is

the sequential unconstrained minimization technique based on the quadratic extended

interior penalty function ]ls. The method is implemented in the NEWSUMT-A 1_4 com-

puter program, used in the present study, that internally converts Eq. (6.1.1) to a se-

quence of unconstrained minimization problems that have the form

NIl, lrl, oa Tldu

_(.X, r,) -F(.,_)+ r,[_p(g_) + _-_g_) + _p(X, - X_)+
_----1 k=l i=l

ride

 p(x? - x,)] (6.2.1)
,ml

where 4_ is the pseudo-objective function, rp is the penalty parameter, and/,(g) is a

penalty function associated with constraintg which has the form

1 fig>go;
;' (6.2.2)

P(g)= _ [(_)'- 3(_)+ 3], fig<go

where go is a user-specified transition parameter. Note that when g > go the method

is essentially the interior penalty function SUMT _s. The quadratic extension is added

for g < go in order to allow for constraint violations which may occur during the opti-

mization process. The quadratic extension also has continuous second derivatives at go

which is desirable if second order methods (Newton's method, for example) are used

to solve the unconstrained minimization problem. To determine the optimum design,

Eq. (6.2.1) is solved repeatedly by decreasing values of rp until some specified con-

vergence criterion is met (see section 6.8). Since, for each specified value of rp, Eq.

(6.2,1) is a nonlinear function of the design variables, X, this unconstrained minimiza-

tion problem must he solved iteratively. At the beginning of each new iteration from

the design, ._q, a move, aft, within the design space that reduces _I, must be deter-

mined in order to generate an improved 0ower weight) design, .Xq+]. In other words,
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=

improved designs are generated at each iteration where

(6.2.3)

Many methods exist to determine the search direction _. NEWSUMT-A employs

Newton's method with approximate second derivatives of the objective function and

constraints with respect to the design variables. As shown in Ref. 113, these approx-

imate second derivatives are formed using only the first derivatives of the objective

function and constraints with respect to the design variables. Use of Newton's method

with approximate second derivatives to determine S and solve Eq. (6.2.1) is desirable

since the method has the efficient convergence characteristics of a second order method

but does not require the computationally expensive calculation of second derivatives.

Once g is determined, Eq. (6.2.3) is substituted into Eq. (6.2.1) leaving the following

one-dimensional unconstrained minimization problem

minimize cI,(a). (6.2.4)

Eq. (6.2.4) is then solved for the optimum step size a*. In NEWSUMT-A this is done

using the Golden Section Search algorithm (see Chapter 4 of Ref. 9). Knowing a* and

S, at each iteration the improved design is then

gq+l = gq + $. (6.2.5)

For the specified value of rp, iterations continue until no further reduction in q,, the

pseudo-objective function, is possible. The penalty parameter is then reduced and an-

other unconstrained minimization is performed. This process continues until final con-

vergence is achieved.
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6.3 Method of Feasible Directions

Sequential unconstrained minimization techniques such as the one described in

section 6. I are popular because they are generally reliable and easy to implement. The

interior penalty function SUMT is particularly desirable since the method generates a

sequence of steadily improving feasible designs that funnel down the middle of the fea-

sible region of the design space toward the optimum 116. On the other hand, sequential

unconstrained minimization techniques tend to require a large number of evaluations

of the objective function and the constraints necessitating the use of approximations to

these functions when their evaluation is computationally expensive 11T. Furthermore,

the pseudo-objective function, _, of Eq. (6.2.1) tends to be numerically ill-conditioned

as the design vector, ,_, approaches a constraint boundary where constraints become

active _ _ 0). The method of feasible directions 11s'_19, another popular optimal de-

sign algorithm, is especially suited to the search for an optimum design at or near con-

straint boundaries.

Feasible directions is a direct method, requiring separate treatment of the objective

function and constraints without grouping them together into a single pseudo-objective

function. From a point on the boundary of the feasible domain, the method of feasi-

ble directions is applied to determine a search direction, if, that produces a design that

reduces the objective function, F, (making ff a gsable direction) while keeping the de-

sign as far from the constraint boundary as possible (making ff a feasible direction).

Hence, a constrained maximization subproblem can be defined having the elements of

ff as the unknown variables. This problem is stated as

m_ _ _

subject to - S. Vgj + Oj_ < 0

...... CF + _<o

0j __0

bounded

jelA
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where IA is the set of constraints that are active (gj -_ 0) at _q, the current design,

Vgj is the gradient of the jth active constraint, VF is the gradient of the objective

function, and the 0j are "push-off" factors that determine how far X q+_ will he from

the constraint boundary upon a move along ff with a = 1.0 (see Eq. (6.2.3)). For

highly nonlinear constraints, a large value of 0j may be necessary to prevent a small

move (small step size a) along ff from producing a design that violates adjacent con-

straints. For linear constraints, 0j -- 0 is reasonable since a move in a direction tangent

to a linearconstraintcan be made withoutviolatingthatconstraint,The constraint",._

bounded" has traditionallybeen imposed by requiring

-1.0 _< Si __ 1.0 i-- 1,2,...,ha,. (6.3.2)

Eqs. (6.3.2) and (6.3.1) define a linear (convex) constrained minimization prob-

lem for the elements of the search direction vector, if, that can be solved by the sim-

plex method (see section 3.6 of Ref. 9), a very efficient technique for solving linear

programming problems. Unfommately, as discussed in section 6.5 of Ref. 120, bound-

ing S as shown in Eq. (6.3.2) biases the search direction - a significant drawback.

This drawback can be avoided by bounding the Euclidean norm of if, instead of the

individual terms of S, in the following way

,._ ,.q _ 1.0. (6.3.3)

While replacing Eq. (6.3.2) with Eq. (6.3.3) adds a nonlinear constraint to Eq. (6. 3.

1), Zoutendijk 11s has shown that this constraint can be re-written in a form that ren-

ders Eq. (6.3.1) solvable using linear programming techniques.

The method of feasible directions is one design optimization option in the ADS 121

design synthesis computer program, which is used in the present study. Once Eq. (6.

3. 1) is solved for ,._, a one-dimensional search for a* must be performed as noted in

section 6.2. The option in ADS chosen to perform this one-dimensional search is the

Golden Section search algorithm for minimization of constrained functions of one vari-
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able. Iterations involving calculations of ,_ from Eqs. (6.3.1) (6.3.3) and the determi-

nation of a" continue until convergence is achieved.
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6A Design Variables

Design variables can generally be classified as either continuous or discrete. Con-

tinuous design variables are allowed to take on any value between their specified upper

and lower bounds; however, discrete design variables are constrained to take on only

certain specific values between these limits. As was mentioned in section 1.1, a wide

variety of design variables is available to the designer of laminated composite structure.

These design variables include number of plies with the same fiber orientation within

each layer of the laminate (or layer thicknesses), laminae fiber orientation angles, and

the lengths of the various segments comprising the stiffening tings. Treatment of seg-

ment lengths as continuous variables generally does not cause any difficulty during

fabrication since most parts can be readily machined to virtually any length. Treatment

of lamina fiber orientation angles as continuous variables is also reasonable; however,

in some instances it may be more cost-effective to limit the choice of angles to a spe-

cific set such as 90 °, 4-45 °, and 0°. Treatment of the number of plies within a lamina

as a continuous variable may not be reasonable in designs where the structure is to be

fabricated from prepreg having a specific ply thickness since non-integer values call for

fractions of plies.

If lamina thicknesses, fiber orientation angles, and ring segment lengths were all

treated as design variables in the structural sizing of an eight layer cylinder with a sin-

gle ring stiffener made of an eight layer flange and an eight layer web, the number of

design variables would be very large. The approach taken in the present study is to use

only a small subset of the total number of design variables available, leaving problems

involving larger, more complicated sets of design variables for future study. By start-

ing with a small set of design variables and working toward larger sets, it may become

evident at some point in the process that a further increase in the number of design

variables, with the associated increase in the complexity of the problem, may not be

cost-effective.

In the present study, lamina fiber orientation angles are not considered as design
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variables.Since structuralweight isthe objectivefunctionto be minimized, the objec-

tivefunctionisindependentof the lamina fiberorientationangles.This independence

can createcomputationaldifficultiesin some cases.Furthermore, the work of Onoda 7(

and Fukunaga and Vanderplaats12_ indicatesthatlaminationparameters may be prefer-

able to fiberorientationanglesas design variablea.As shown in Rcfs. 74 and 122,the

laminate constitutiveequationscan be writtenin terms of theselaminationparameters

which are harmonic functionsof the fiberorientationangles.Another simplification

used in the presentstudy isthatthe number of plieswith the same fiberorientation

withineach layerof the laminat_willbe treatedas continuous design variablessince

thisissufficientfor theoreticalpurposes. The use of discretedesign variablesintro-

duces additionalcomplexity intothe problem thatisbeyond the scope of the present

study.For fabricationpurposes,the number of pliesin each lamina can be rounded to

integervalues.While rec_ntdevelopments123 may renderthispracticeof rounding ob-

solete,furtherevaluationof methods such as those presentedin Rcf. 123 iswarranted

beforesuch methods are appliedto the solutionof nonlinearproblems such as the one

of the presentstudy.

A problem in which lamina thicknesses are design variables is one example of

a sizing optimization problem. Other than a reasonable choice for upper and lower

bounds on these design variables, no other special considerations are needed. In the

present study, ring segment lengths are also considered as design variables. Problems

in which ring segment lengths are design variables, however, are more closely related

to shape optimization problems since a change in these designs variables causes a

change in the position of the boundaries of the various shell branches. Use of these

design variables does not complicate the analysis of the prebuckled equilibrium con-

figuration since this analysis is based on exact, closed-form solutions to the govern-

ing equations. However, caution must be exercised in the buckling analysis since the

buckling loads are calculated based on the finite element method. After each design

iteration, the finite element mesh must change in order to accommodate the new shell
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branchboundarypositions. In thepresent study, a simple remeshing rule that translates

finite element node positions as a function of shell branch boundary changes is used.

It is assumed that the number of nodes within each shell branch remains equal to the

value set at the beginning of the design cycle. Care is taken in specifying upper and

lower bounds for the segment lengths that prevent distortion of the finite element mesh

to the point where the calculated buckling loads are no longer accurate.

In summary, the various design variables to be used in the present study are

1. Cylindrical shell lamina 0zicknesses

2. Ring flange lamina thicknesses

3. Ring web lamina thicknesses

4. Ring flange lengths

5. Ring web radial depths.
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6.5 Stress Constraints

The loads imposed upon the ring-stiffened cylinder must not produce stresses

within the structure that exceed the strength of the material from which the structure

is fabricated. Since the stresses in each lamina of each branch of the prebuckled shell

are continuous functions of the coordinates fl and fs (see Fig. 3.3.1), the requirement

that the structure not be overs_ represents an infinite number of constraints. In

general, however, only a small subset (if any) of these consu'aints will be active in the

final optimal design. Generally, suess constraints corresponding only to points having

coordinates _1 and _s where these constraints exhibit a local minimum are retained. In

the present study, such points are at the coordinates _3 = _ and _ = _+_ (see Figs.

3.2.1 and 3.2.2) of the individual lamina comprising the cylinder skin adjacent to ring

flanges and the clamped boundaries and ring webs at their most inboard edges.

Many different failure criteria exist that may be used as the basis for definition

of the stress constraints. The simplest of these criteria, maximum stress or maximum

strain, fails to account for the interaction among the various stress components acting

at a single point. The Tsal-Wu _24 tensor polynomial approach is a popular failure cri-

terion that accounts for this interaction that has, in some cases, been used to accurately

predict experimentally observed failures. As pointed out by Hashin 12s however, the

Tsai-Wu criterion fails to account for the fact that failure in composites can occur in

one or more very different failure modes that might not be well represented by a sin-

pie smooth function such as that of Tsal-Wu. Hashin proposes a failure criteria based

on four separate failure modes: fiber tension, fiber compression, matrix tension, and

matrix compression. Rosen, et. aL _2e extended I-Iashin's work by noting that the two

matrix modes are more accurately characterized by four distinct matrix modes: two

in-plane modes and two interlaminar modes dominated by interlaminar shear and nor-

mal stresses. The criteria of Rosen, et. al. have been chosen as the basis of the stress

constraints in the present study. These constraints are : at each specified point within a
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specified shell branch having coordinates _1 and _s

fill

If an > 0; then 1.0--aA---_,_> 0 (6.5.1)

o'll

If an < O; then 1.0- ii-o'-_ > 0 (6.5.2)

If o'22 < O; then

{ o'2232 (,.12,_2
if o,22_o; then 1.0-\_2-_2/ -\_) >_0 (0.5.3)

1.o- _.o- k2_g] o'-_,_ k_] -

_._] >_o

,,, >o (o.,.5)
:If o',, > o; then 1.0 - _,_) - [ (,r_)2 j -

1.0- 1.0- k2-_2_)j o'-_c k2-_2_/-

> o
(,'#,)2 ]-

If o's3 < O; then

(6.5.4)

(6.5.6)

where the o'ij are normal stresses with respect to the ij directions in the local material

coordinate system (see Figs. 3.2.1 and 3.2.2), the _'ij are shear stresses with respect to

AT
the ij coordinate directions, and the aii, a_ c, and r_ are allowable tensile normal,

compressive normal (note that aUowable compressive stresses are assumed to be neg-

ative values), and shear stresses, respectively, determined from simple unidirectional

coupon tests. Eqs. (6.5.1) and (6.5.2) characterize fiber direction tensile and compres-

sive failure modes respectively. Eqs. (6.5.3) and (6.5.4) characterize in-plane mawix

tensile and compressive failure modes respectively while Eqs. (6.5.5) and (6.5.6) char-

acterize interlarainar tensile and compressive failure modes respectively. Note that Eqs.

(6.5.5) and (6.5.6) may also be used to characterize failure in the ring flange/cylinder

skin attachment area.
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6.6 Buckling Constraints

The true "buckling" constraint is that the axisymmetric equilibrium configuration

of the ring-stiffeued cylinder must remain stable under the imposed loads. The most

popular way of writing this constraint mathematically is to constrain the lowest buck-

ling load parameter to be greater than or equal to 1.0. In other words

1.0 -- ,_cr >_ O. (6.6.1)

As was discussed in section 2.3.2, it is not sufficient to impose only the single con-

straint, Eq. (6.6.1), without considering buckling modes having larger buckling load

parameters due to the possible occurrence of mode coalescence and/or mode switching.

In the case of buckling of a cylindrical shell, it may be difficult to predict a priori how

many of these higher modes must be accounted for.

In section 5.1 it was mentioned that the efficiency of the buckling analysis is

highly dependent upon the speed with which, for a specified value of the circumfer-

ential wave number ni (see section 5.1), the sequence of linear algebraic eigenvalue

problems (Eq. (5.5.4)) are solved for the load parameter increments (A_). Also men-

tioned in section 5.1 is the fact that the efficiency of the solution of Eq. (5.5.4) drops

substantially when [K(ni) + Ka(ni; _)] is not positive definite. Such a situation would

arise if, for a specified value of nl, critical load parameters related to modes higher

than those associated with the smallest critical load parameter must be calculated. It

was observed during the course of this study that, with the commercial eigensolvers

available, the solution of F,q. (5.5.4) could not be performed with sufficient computa-

tional speed to make the optimal sizing algorithm practical.

Calculating the pmxise value of A at which the structure will buckle along with

the associated mode shape whenever the optimization subroutine calls for a buckling

constraint evaluation is inefficient because it provides the optimizer with more infor-

marion than is actually needed. A new constraint more directly related to the stability
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(or lack thereof) of the axisymmetric equilibrium configuration can be formulated that

lends itself to much faster evaluation than the constraint based on the buckling eigen-

value formulation. This new constraint does not require the solution of an eigenvalue

problem; rather, it ensures that the matrix [K(m) + Ka(ni; _)] remains positive deft-

nite, guaranteeing the stability of the axisymmetric equilibrium configuration. The con-

straint is formulated in sections 6.6.1 and 6.6.2 below.

6.6.1 LDL T Decomposition of [K(ni) + Ko(ni; _)]

It was mentioned in section 2.3.4 that Ringertz 8s presents a technique for impos-

hag buckling constraints on designs of stiffened panels, characterized by a geometri-

cally nonlinear prebuckling equilibrium configuration and analyzed using a commer-

cially available finite element program, without soI;cing a nonlinear eigenvalue prob-

lem. He develops the equivalent constraint

N

l,(_,) _>0 (6.6.1.1)
izl

where N is the order of the global stiffness and geometric stiffness matrices ([K] and

[Ka]) of the finite element model and the 3'i are the eigenvalues of [K + Ka]. Unfor-

umately, this constraint formulation still requires the solution of an N tla order eigen-

value problem for all N eigenvalues, which can be c0mputafi_0n_Y expensive for

larg e problems. Haftka 12r presents an alternate technique for establishing stability

co_traha" _ without _lving an e!genvalue problem. His method relies= on the symme-

try of [K + Ka] ([K(nl) + Ka(ni; ,_)] in the present study). This property allows

[K(m) + Ka(n. X)]tohe f_ U

[K(.) + _Ca(-;_)]= ILl[D]ILlT (6.6.1.2)

where [L] is a loweru_an_a r matrix with all diagonal terms equal to I and [D] is a

diagonal matrix. The matrix [K(ni) + Ko(ni; )_)] is positive definite if and only if all
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of the diagonal terms, d_, of the matrix [D] are positive. In other words

> o i=

The computation of LDL T appears on pages 9 through 30 of Ref. 128 and is outlined

in Appendix E. As is shown in Appendix E, the banded nature of the matrix [K(ni) +

Ka(ni; )_)] allows for very rapid factorization of this matrix even when its order is

very large.

6.6.2 Equivalent Constraint Formulation

Haftka 127 imposed the nonnegafivity requirement on all of the terms of the [D]

matrix, shown in Eq. (6.6.1.3), as buckling constraints in the sizing of a wing bay

of the space shuttle orbiter. For the problem Haftka considered, Eq. (6.6.1.3) yielded

about 50 separate constraints. Similar application of Eq. (6.6.1.3) to the problem con-

sidered in the present study would re,suit in a prohibitively large number of inequality

constraints. It can be shown that if the matrix [M] is factored into an upper triangular

matrix, [M_'], using Gaussian Elimination then

[M'] = [D] [L]r ;

hence, the LDL T factorization can actually be produced using Gaussian Elimination. If

[M"] is made up of N-by-N square submatrices, then this Ganssian Elimination pro-

cedure is generally refened to as "Potter's Method". Blum and Fulton _°_ state that if

[rnt] represents the kth submatrix (k = 1, 2,..., N) appearing along the diagonal of

the upper triangular matrix, [M"], then all of the zero's of the determinant of the origi-

nal matrix, [M], are contained in the determinant of [raN], the last submatrix appearing

along the diagonal of [M"]. Since the order of the submatrices is not restricted, then

[m t] can be 1-by-1 yielding the term-by-term Gaussian Elimination of Eq. (6.6.2.1)

and the corresponding LDL T factorization. The diagonal matrix [D] is then a matrix of

1-by-1 "submatrices" corresponding to the [m k] submatrices of Potter's Method. This
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means that if [K(ni) + Ka(ni; _)] is factored as shown in F.q. (6.6.1.2), then all of the

zero's of the determinant of [K(ni) + Ka(ni; _)] are contained in the very last term

of the [D] matrix in Eq. (6.6.1.2). This means that, for a given value of n, as ,_ ap-

proaches ,_,_ (see section 5.1) from above, the first term of the [D] matrix to reach zero

will be the very last term, dN. During the course of the present study, this has been

observed in practice.

Starting from an initially feasible (all constraints satisfied) design, the structural

optimization algorithm developed for the present study is formulated to produce a se-

quence of steadily improved feasible designs. Approximations for either the objective

function or the constraints are avoided making it highly unlikely that convergence to

an infeasible design during any portion of the optimization process will occur. Since

the initial design and all subsequent improved designs are feasible, the axisymmetric

equilibrium configurations of all these designs are stable and the [K(ni) + Ko(ni; ,_)]

associated with these designs for all circumferential wave numbers, n, are positive deft-

nite. Furthermore, the first term of the [D] matrix in the LDL T decomposition of these

[g(ni) + Ka(ni; )0] matrices to reach zero when ,_ )_, (buckling occurs for the
L±

specified value of rti) is the very last term, dN, m_g that of all the constraints de-

lineated in Eq. (6.6.1.3), dN _> 0 represents the critical constraint. From an initially

feasible design, during movement in the design space to an improved design where

the A,, associated with some values ni are redu_, no other term of the [D] matrix

associated with these ni will reach zero without dN teaching zero first. Hence, from

the initially feasible design, the calculation of the search direction, S, yielding an im-

proved design can be based on a single stability constraint for each specified value of

hi, namely

d_t(ni) >__0 i=nl,n2,...,n, (6.6.2.2)

where t is the total number of values of n to be considered in the constraint set and the

ni are the prescribed circumferential wave numbers.

Given a feasible design, then, when determining a search direction, S, all terms
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of the [D] matrix except the last one, tiN, can be ignored in the formulation of the sta-

bility constraints for each n_. However, these other terms cannot be ignored during the

one dimensional search for the step length, a* (see Eq. (6.2.3)) because the function

dN(n_; A) has poles at values of A that are zeroes of these other terms. The function

dN(ni; A) exhibits a jump discontinuity at these poles and thus can jump from negative

to positive without passing through zero when A > A,,. During the one-dimensional

search, a candidate value of a* may move the design into the infeasible domain. If

dN is the only value returned to the optimization subroutine upon a call from the one-

dimensional search routine at this value of a*, the discontinuity exhibited by dN in

the infeasible domain could cause a positive value of the stability constraint to be re-

turned to the optimizer even though the design is infeasible. Fortunately, if the design

is infeasible, then at least one terra of the [D] matrix must be negative. Such negative

terms can be used to augment the simple stabilityconstraintsspecifiedin Eq. (6.6.2.2)

during the one-dimensionalsearchto ensure thata negativestabilityconstraintvalue is

returnedto the optimizerwhenever a candidatea* produces an infeasibledesign. An

equivalentexteriorconstraintisproposed thatincludesallof the negative terms in the

[D] matrix. At a candidatedesign,ifn_, isthe number of thesenegativeterms,not

includingthe lastterm,dN, then the equivalentstabilityconstraint,for each specified

circumferentialwave number, used in the presentstudy is

I dN, if ndn --" O;
6 r.,. "Ii12 (6.6.2.3)

gi = -IdNl-- [ _=l(d,)' ] , ifn,,,>O.

The formulation of this constraint is based on the equivalent exterior constraint sug-

gested by Haftka, G_dal, and Kamat (Eq. 7.4.3 on page 239 of ReL 9) for constraints

that vary continuously with time. The idea of replacing a large number of constraints

with a single equivalent constraint grew out of the fact that specifying a constraint at

each time step would yield a prohibitively large number of constraints. A similar prob-

lem would occur in the present study if constraints were written for each diagonal term
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of the [D] matrix as the number of elements in the finite element model of the ring-

stiffened cylinder became large.

Use of the equivalent constraint defined in Eq. (6.6.2.3) in optimization algo-

rithms that operatein the infeasible region of the design space is not recommended.

Furthermore, even if the equivalent constraint formulation is abandoned in favor of the

specification of a constraint for every diagonal term of the [D] matrix of the LDL T de-

composition of [K(ni) + Ka(ni; A)] shown in Eq. (6.6.1.3), use of an optimization

algorithm that may converge to intermediate designs that are infeasible is still not rec-

ommended. This is because in the infeasible region of the design space the derivatives

of the di with respect to the design variables, used to determine the search direction if,

are discontinuous.

It was also discovered that in the feasible region of the design space the deriva-

tives of dN(ni) with respect to the design variables are extremely large when A is

close to A,,(ni). For example, for some designs when A - A,,(ni) _- 0.001 it was

observed that the derivatives, OdN/OXi, were approximately 100000 while the value

of the constraint was approximately 500. A constraint value of 500 does not appear

to justify considering that constraint as active until it is recognized that very small re-

ductions of the design variables (number of plies, length of ring flanges, etc.) produce

immediate violation of the constraint. Hence, one final modification to the stability

constraints was made to allow for a generous buffer zone preceding g_ ffi 0 where de-

signs having stability constraints falling in this zone were considered infeasible. Thus

the final form of the stability constraints used in the present study is

b b
gj - gb,,ll-->0 j = 1, 2,..., t (6.6.2.4)

where t is the number of critical and near-critical circumferential wave numbers for

which constraints of the form shown in Eqs. (6.6.2.2) and (6.6.2.3) are written, g_ is

b
given in Eq. (6.6.2.3), and gb,,t! is the value of gb less than which the stability con-

b
straint is to be considered violated. A good value to assign to gb_fI is dependent upon

the particular problem being solved.
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6.7 Sensitivity Analysis

During the execution of the optimal sizing algorithm, the optimization subroutine

requires the values of the derivatives of F, g}, and g_ (see Eq. (6.1.1)) with respect to

the design variables Xi in order to determine the search direction S (see Eq. (6.2.3)).

In the present study, derivatives of the total structural weight with respect to the de-

sign variables, (OF/OXi), are evaluated in dosed form. Derivatives of the behavioral

(stress and stability) constraints are evaluated approximately using the following for-

ward finite difference formulae

og___;-_9_(x,+ ax,) - g_(x,) (6.;,.1)
OXi AXi

_.9}(x,+ Ax,) - g}(x,) (6.7.2)
OXi AXi

where AXi is a small perturbation of the ith design variable. The calculation of the

derivatives shown in Eqs. (6.7.1) and (6.7.2) requires nd,,+l structural analyses where

nd,, is the total number of design variables.
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6.8 Convergence Criteria

In sections 6.1 through 6.7, the structural optimization problem that is the focus of

the present study is formulated and methods are proposed for its solution. Since these

methods are iterative in nature, criteria must be specified to determine convergence

and the iteration cessation point. During the progress of the optimization algorithm,

convergence criteria are needed for both the optimum step size, a*, and the optimal

design itself. In the present study, it is assumed that the convergence criteria for a*

that are set internally in both NEWSUMT-A 114 and ADS 12_ are adequate; however,

consideration of convergence criteria for the optimal design that are more precise than

those used in these optimization programs is warranted. Such criteria are the subject of

this section.

Convergence of the optimal design indicates when no further search directions,

,.q, need to be calculated and the calculation of new designs can be stopped. The most

popular criteria used to indicate convergence, used in both NEWSUMT-A and ADS,

are based on the absolute or relative change in the objective function after two or more

iterations. For example, if after three iterations the objective function has changed by

no more than some specified absolute or relative value the optimization process ceases.

Use of such criteria is certainly justified in order to terminate a conswained minimiza-

tion experiencing computational difficulties; however, further criteria are needed to es-

tablish the proximity of the candidate design to a true local optimum. More accurate

determination of this proximity is particularly important when the relative merits and

difficiencies of several optimum designs are to be _ in a study meant to reveal

design trends. If the absolute or relative change in the objective function is the only

criterion used to establish the optimality of a candidate design, it is impossible to dis-

tinguish designs that converged due to their proximity to a true local minimum from

designs that have not. Problems associated with numerical ill-conditioning may keep

the optimizer from finding a search direction that reduces the objective function even

though the current design is far from a local optimum. Hence, further criteria must be
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appliedin orderto determine when a local optimum has been located.

Unless both the objective function and the feasible domain are both convez (see

section 5.1.2 of Ref. 9), many local optima may exist in the design space. In the case

of a nonconvex problem it is not possible to mathematically establish the global opti-

mality of a locally optimum design without considering all local optima in the design

space. However, rigorous criteria do exist to establish local optimality of a candidate

design using information at the point in the design space defined by that design only.

For inequality constrained problems, such as the one investigated in the present study,

the nece_aary conditions for local optimality axe

1. If a constraint, g, is not active (g > 0), its corresponding Lagrange Multiplier, A,

is zero.

2. All of the Lagrange Multipliers associated with the set of gj j = 1, 2,..., n, ac.

tive comtraints (gs = 0) axe non-negative and

I'$a

= As%s= o (6.8.1)

S----I

where £ is the Lagranglan function, _ is the gradient vector (derivatives with respect

to the design variables), and A s is the Lagrange Multiplier associated with the jth

active constraint. These necessary conditions for optimality are known as the Kuhn-

Tucker conditions.

Performing the dot product of both sides of Eq. (0.8.1) with a search direction, if,

and rearranging terms yields

na

g.Cr = A,g"%s.
Sffil

If ft. VF (or if- QgS) > 0 then a move along ff increases F (or gs). If ft.

_'F (or _. _gs) < 0 then a move along _ decreases F (or gs). Note that if

the A s are all positive and Eq. (6.8.2) is satisfied, it is impossible to have ft. _F <

0 and all g. _g# > 0. Since gS ffi 0 for all active constraints, satisfacdon of Eq.
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(6.8.2) means that if 5. VF < 0, then at least one constraint will be violated if a move

along S is made. One remaining possibility is a move in a direction, if, along the local

tangent to the objective function and the active constraints where

S. VF = S. Vgj - 0 j _- 1,2,...,na. (6.8.3)

In some cases, a move along a direction ff satisfying Eq. (6.8.3) may reduce

F without violating any of the active constraints. The possible existence of such a

search direction renders satisfaction of the Kuhn-Tucker conditions an insufficient

proof of local optimality. Sufficiency can only be established by considering higher

order derivatives of the objective function and constraints with respect to design vari-

ables (see Eqs. (5.1.14) through (5.1.16) of Ref. 9). A formal check of the sufficiency

conditions is seldom performed in practice (and will not be performed in the present

study) since it involves the calculation of these higher order derivatives. Furthermore,

considering the theories upon which the optimization algorithms outlined in sections

6.2 and 6.3 are based, the chance that the algorithm could miss such a search direction

and converge prematurely are small. Hence, in the present study, candidate designs

satisfying the Kulm-Tucker conditions will be considered to be local optima, with the

caveat that the check for sufficiency of the Kuhn-Tucker conditions as proof of local

optimality will not be made.

In practice, locating a design satisfying the Kulm-Tucker conditions ezactl_/is

neither feasible nor necessary. Rather, satisfaction of these conditions to within some

tolerance is more appropriate. In the present study, satisfaction of the Kulm-Tucker

conditions will be assumed if

_ A°-gL
8Xi . J 8X_

<_ eK_

where eKr_ is a small specified tolerance.

i = 1, 2,..., na, (6.8.4)
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Eq. (6.8.4) requires the calculation of the Lagrange multipliers, Ap

study, a least squares approach is used. F'trst, Eq. (6.8.1) is rewritten as

where

{G}- [Iv]{A}= {0}

{G} = _F

and

i = 1,2,...,nd,
no = aX;

A residual vector, {u}, is defined such that

{.}= [N]{A}-{G}.

j = 1,2,...,n,.

In the present

(6.8.5)

(6.8.6)

(6.8.7)

(6.8.8)

Next, the square of the norm of {u}, [l{u}ll_, is minimizedby differentiating it with

respect to the Aj and setting the result of each differentiation to zero. This minimiza-

tion yields

2 [A/'}T [."V] {A} - 2[.N'] T {G} = {0}. (6.8.9)

Hence,

{A} = ([N]T[_V])-'[_V]T{a} (6.8.10)

Eq. (6.8.10) is the best solution in the least square sense; however, if the Kuhn-

Tucker conditions (F,q. (6.8.5)) are satisfied it should he the ezact solution. These

Lagrange multipliers indicate the cost of the constraints, g j, in terms of their affect on

the objoctlve function, F. Smsll values of Aj indicate that the constraint, gj associated

with that Aj can be made more restrictive without a significant associated increase in

F.

When n, = 1 (only one constraint is active) then satisfaction of the Kulm-Tucker

conditions is evaluated by considering the "cost-effectiveness" with respect to a change

in each design variable given by

OF/OX_

Og/OXi i = 1, 2,..., ha, (6.8.11)
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where g is the active constraint. The Kulm-Tucker conditions are satisfied when the

cost-effectiveness with respect to each design variable is the same. As in Eq. (6.8.4),

satisfaction of the Kulm-Tucker conditions for the case of a single active constraint

in the present study will be assumed when the cost-effectiveness with respect to each

design variable is equal to within some tolerance, _KT,.
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Chapter 7

RESULTS AND DISCUSSION

7.1 Buckling Analysis Case Study

During the development of the numerical analysis outlined in Chapters 4 and 5,

care was taken to insure that the results generated with the analysis of the present

study matched previously published results. Several case studies of the buckling of

imperfect, anisotropic unstiffened cylinders, the results of which were reported by

Booton 3s, were performed using this analysis. The calculated buckling loads matched

the buckling loads reported by Booton precisely. Case studies of the buckling of an

orthotropic annular plate subjected to outer edge compression were also performed

with the analysis of the present study and compared to results published by Uthge-

nannt and Brand 120 and Ramalah is°. The buckling loads and mode shapes predicted

using the analysis of the present study matched those reported by these authors pre-

cisely. A more general case study of the buckling of an anisotropic annular plate (an

annular plate made of a composite laminate exhibiting bending-stretching coupling,

twisting-stretching coupling, bending-twisting coupling or some combination of these

couplings) subjected to outer edge compression was also performed using the analy-

sis of the present study. No previously published results of such a case study could be

found in the literature; hence, the buckling loads and mode shapes generated with the

analysis of the present study were compared with buckling loads and mode shapes gen-

erated using the STAGS l°e general purpose finite element program. Geometries and

orthotropic material properties used by Ramaiah 13° were chosen for this study; fuc_her-

more, [+45/-45]r and [0/90IT laminates of this orthotropic material were considered.

Buckling loads and mode shapes generated with the analysis of the present study and

STAGS matched precisely.

Before proceeAing with an optimal sizing study, it is worthwhile to first consider

a case study of the buckling behavior of a ring-stiffened cylinder subjected to vari-
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ous loadings and including imperfections of various magnitudes. The results of such

a case study can be used to help evaluate and understand the optimal ring-stiffened

cylinders generated with the sizing algorithm. For the cylindrical shell depicted in Fig.

7.1.1, buckling loads were generated for several combinations of axial compression

(P), torsion (T) and internal pressure (p). The corresponding unstiffened cylindrical

shell was also considered for comparison. In all cases, the cylinder length (L) was

60.0 in., the cylinder radius was 18.08 in. and the shell wall was assumed to be a [-

454/454/904/04]S laminate of graphite-epoxy prepreg tape having material properties

shown in Table 1.1.1 For the ring-stiffened cases, the flange length (LF) was 2.0 in.,

the web height (Hw) was 5.0 in., and the flanges, webs and cylinder end tabs (having

length LF/2) were all assumed to be made of a [45/0/45] T laminate of graphite-epoxy

woven cloth material having properties shown in Table 7.1.2.

The bucHing interaction diagram for perfect and imperfect unstiffened shells with

and without pressure is shown in Fig. 7.1.2. For the two unpressurized cases, results

were also generated using the analysis code published in the report by Booton 35. The

pressurized case was not analyzed using Booton's code since it does not have the ca-

pability of computing buckling loads of cylinders loaded with constant pressure. The

results, identified as Ref. 35 in Fig. 7.1.2, match the corresponding results generated

using the present analysis very well. The arrows in Fig. 7.1.2 indicate percent changes

in the buckling load of proportional load cases having the same ratio of Nx/Nxv,

moving from the base of the arrow to the tip. As can be seen in the figure, the pres-

ence of an initial imperfection in the unpressurized shell having a maximum amplitude

equal to 25% of the total shell thickness (ts) results in a 54% drop in buckling load

under pure compression but only a maximum 3.5% drop under pure torsion. The addi-

tion of a 60.0 psi internal pressure to the imperfect shell then raises the torsional buck-

ling load a maximum of 110%; however, it raises the axial compression buckling load

of the imperfect shell by only 22%.

A similar buckling interaction diagram for the ring-stiffened shell for four cases
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of pressure and imperfection combinations is shown in Fig. 7.1.3. Three of the four

buckling loci in Fig. 7.1.3 correspond to those shown for the unstiffened shell in Fig.

7.1.2 (the pressurized, perfect case was added to provide a theoretical upper bound in-

teraction curve). For the unpressurized shell under pure torsion, the pre_nce of the

imperfection causes at most a 1% decrease in the buckling load as compared to that of

the perfect structure; the addition of internal pressure raises the buckling load of the

imperfect structure by 48%. Under pure compression, imperfections account for a 68%

drop in buckling load compared to the perfect structure; addition of pressure then raises

the buckling load of the imperfect cylinder subjected to axial compression 77% above

the buckling load of the unpressurized, imperfect cylinder. Note that in the unstiff-

ened shell, internal pressure was more effective in raising the buckling load Under pure

torsion than under pure compression while in the stiffened shell, the opposite is true.

This difference in the effect of internal pressure on the buckling load of the unstiffened

cylinder versus the ring-stiffened cylinder can be explained using Figs. 7.1.4 through

7.1.6 which show the effect on the buckling load of adding ring stiffeners to the tin-

stiffened shell. In these figures, proportional load cases with the same Nx/Nxy ratio

are linked by arrows pointing from the critical combination of Nx and NxY at buck-

ling of the unstiffened shell to the corresponding combination for the stiffened shell.

For the perfect, unpressurized cylinders (Fig. 7.1.4) adding rings produced up to

an 85% increase in the torsional buckling load but virtually no increase in the axial

compression buckling load. Rings are much more effective in resisting the formation

of the long, skewed waveforms associated with torsional buckling than the shorter, less

skewed waveforms associated with axial compression buckling. For the unpressurized,

imperfect cylinder (Fig. 7.1.5), the results are nearly the same as the perfect cylinder

in the case of pure torsion; however, under pure compression the ring-stiffened cylin-

der buckles at a load below that of the corresponding unstiffened cylinder. This lower

buckling load can be explained by comparing plots of the buckling mode shapes of the

imperfect and perfect cylinders for a single proportional load case. This load case is
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labeled case "A" in Figs 7.1.4 through 7.1.6 and the mode shapes appear in Figs. 7.1.7

and 7.1.8. The buckling mode shapes of the cylindrical shell and ring webs show that

the ring webs of the imperfect cylinder (see Fig. 7.1.8) buckle while the cylindrical

shell does not buckle between the rings. On the other hand, the perfect cylinder (see

Fig. 7.1.7) buckles in the panel length between the rings while the ring webs do not

buckle. The outward radial Poisson expansion of the perfect, ring-stiffened cylinder re-

sults in the ring webs being stabilized by hoop tension loading; however, in the imper-

fect shell this is not necessarily true. Plots of prebuckling radial displacement of both

the perfect and imperfect unpressurized ring-stiffened cylinders depicted in Fig. 7.1.1

are shown in Fig. 7.1.9 for loading case "A". For the perfect cylinder, the prebuckling

radial displacement is positive everywhere; however, the imperfect shell wall exhibits

regions where the net displacement is directed radially inward. The inward displace-

ment is due to the nonlinear coupling of the axial compression load with the geometric

imperfection where this imperfection is directed radially inward. Two of these regions

are adjacent to the area where the ring attaches to the shell. Hence, the ring webs be-

come loaded in hoop compression which is a destabili_ng load. Since the webs are

long and thin (the most likely configuration predicted by an optimum sizing code based

on the analysis of the perfect structure), the hoop compression load causes them to

buckle prematurely. Refen_ng to Figs. 7.1.4 and 7.1.5, note that for cases where the

addition of tings raises the buckling loads in both figures, the amount of increase ex-

hibited by the imperfect cylinder was smaller than that exhibited by the perfect cylin-

der, except, of course, when the cylinder is loaded in pure torsion and therefore lucks

any sensitivity to the axisymmetric imperfection considered in the present study. Fur-

thermore, referring to Figs. 7.1.5 and 7.1.6, note that for cases where the addition of

rings raises the buckling loads in both figures, the amount of increase exhibited by the

pressufiz_ cyFmder was substantially smaller than that exhibited by the unpressurized

cylinder.
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7.2 Description of Optimal Sizing Case Studies and

Discussion of Algorithm Performance

Optimal design case studies were performed using the three cylindrical shell con-

figurations depicted in Fig. 7.2.1. The first configuration is an unstiffened cylinder, the

second configuration is a cylinder stiffened by two uniformly spaced steps in thickness

(or straps), and the final configuration is a cylinder stiffened by two uniformly spaced

"T'-shaped rings. All three cylindrical shell configurations are 45.00 in. long and have

a 15.00 in. radius to the inner surface of the cylinder wall. Furthermore, the shell wall

in all threeconfigurationsis a [--45N,s/+ ¢SN,,/9ON,o/ONo]Slaminateof graphite-

epoxy prepreg tape having the assumed orthotropic material properties listed in Table

7.1.1. The straps are assumed to be of length L! and made ofa [45N,/0N,/45N, JT

laminate of graphite-epoxy cloth having the assumed orthotropic material properties

listed in Table 7.1.2. The flanges and the webs of the "T'-shaped rings are assumed to

be fabricated from the same cloth material as the straps and are assumed to be lami-

nated in the same stacldng sequence. These rings are assumed to have a flange length

of L I, and a web radial depth of Hw. It is also assumed that both the strap stiffeners

and the "1" ring stiffeners are secondarily bonded to the shell wall using a 0.005 in.

thick layer of ductile adhesive having the isotropic material properties listed in Table

7.1.3. A description of the six possible design variables, N4s, N,o, No, N/, L/, and

J:/w are listed in Table 7.2.1 along with their specified upper and lower bounds and

their initial design values.

Several combinations of mechanical loading (axial compression and torsion), in-

ternal pressure, and initial imperfection amplitudes have been considered. These com-

binations are listed in Table 7.2.2, where "LD ID" identifies each combination, P (Nx)

is the axial loading, T (Nxr) is the torsional (shear) loading, p is the internal pressure

loading, and/_ is the maximum geometric imperfection amplitude written as a fraction

of the total cylinder wall thickness to. Note that as the total cylinder wall thickness

changes from one optimization iteration to the next, the absolute magnitude of the im-
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perfection amplitude changes as well An imperfect, pure torsion case was not consid-

ered since the shell is not sensitive to the axisymmetric imperfection considered in the

present study in the absence of any axial compression loading. The magnitudes of the

loads were chosen to approximate, at 1/8 scale, loadings typical of those occurring in

various regions of the fuselage of a modem commercial transport aircraft. Note that

each of the three shell configurations considered in the case study was sized for a 8ub-

Jet of the cases listed in Table 7.2.2 rather than all 14 cases. Useful design trends can

be established without considering all 14 cases.

It should he reiterated at rids point that the optimal designs generated in the pre-

sent study may be local optima rather than global optima. Hence, a possibility exists

that, for a given configuration illustrated in Fig. 7.2.1 and LD ID listed in Table 7.2.2,

it is possible that a design having a lower weight than the design reported as "opti-

mal" may exist. No attempt is made, in the present study, to locate the global optima.

Rather, from a point in the feasible domain of the design space (see Table 7.2.1 for the

initial values of the various design variables that characterize this poin0, a search is

performed in order to locate an adjacent local minimum.

Finding locally optimum designs that satisfied the Kulm-Tucker conditions (see

section 6.8) was difficult. It was found that, in many cases, such designs could not

be located using NEWSUMT-A or the feasible directions algorithm in ADS alone;

rather, it was discovered that the best results were achieved using a combination of

these two algorithms. Design trends were blurred or hidden entirely until satisfaction

of the Kulm-Tucker conditions was enforced by repeated application of the penalty

function and feasible directions algorithm. From an initially feasible design indicated

in Table 7.2.1, NEWSUMT-A was used first. If the design that NEWSUMT-A con-

verged to did not satisfy the Kuhn-Tucker conditions, then starting at this design, the

method of feasible directions algorithm in ADS was used. In many cases, ADS had to

be restarted two or three times before a design satisfying the Kulm-Tucker conditions

was located. The rationale for this approach was that it is known that performance of
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the penalty function methods in the neighborhood of constraint boundaries can be poor

due to ill-conditioning of the pseudo-objective function (Eq. (6.2.1)), while the method

of feasible directions is written specifically for performing the search for a local op-

timum from designs lying directly on the constraint boundary. Performance of both

NEWSUMT-A and ADS was controlled using the maximum number of iterations (15)

convergence criterion, rather than the relative change in objective function criterion.

In many cases, NEWSUMT-A converged to a design satisfying the Kulm-Tucker

conditions when the optimal design problem was characterized by cylinder wall layer

thickness design variables (N4s, Nso, and No) only. Even when more cylinder wall

layer thickness design variables were added to the problem, NEWSUMT-A still con-

verged to a design satisfying the Kuhn-Tucker conditions. However, in every case con-

sidered in the present study where the optimal design problem included both cylinder

wall layer thickness design variables along with ring sizing design variables (iV/, L/,

and Hw) NEWSUMT-A converged to a non-optimal design requiring the subsequent

application of the method of feasible directions in ADS. Attempts were made to im-

prove the performance of the NEWSUMT-A algorithm by scaling the design variables

and the constraints (see pages 97-100 and 136-137 of Ref. 11), to no avail The ne-

cessity of having to restart the method of feasible directions periodically is thought to

be related to the way the design variables, objective function, and the constraints are

scaled in ADS. Scaling is performed only at the beginning of the first iteration of the

method of feasible directions. Periodic re-scaling of the design variables, objective

function, and constraints during iterations of the method of feasible directions subse-

quent to the first iteration would no doubt improve the algorithm. In any case, with

this combination of NEWSUMT-A and ADS, the optimal designs to be reported in the

section 7.3 were generated. All of these results satisfy the Kulm-Tucker conditions to

within a tolerance, e_'T_ (see Eq. (6.8.4)), of 7%. In certain cases, satisfaction of the

Kulm-Tucker conditions was forced to be tighter than 7%; however, the changes in the

optimal values design variables resulting from this tighter tolerance were insignificant.
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In order to speed the performance of the optimal sizing algorithm the stress con-

straints, described in section 6.5, were not included in the constraint set. It was as-

sumed that for the loadings listed in Table 7.2.2, the stress constraints would not be

critical in comparison to the stability constraints. Results of a thorough stress analysis

of the optimal designs, to be reported in section 7.4, indicate that including only sta-

bility and side constraints in the constraint set was a reasonable approach. Generally,

considering buckling modes associated with 7 or 8 different circumferential wave num-

bers in the stability constraint set was sufficient to allow for the possible occurrence of

mode switching and mode coalescence. Close to the optimum, the number of different

buckling modes considered in the constraint set could be reduced to as few as 3 or 4.

The finite element model used in the stability analysis contains elements with a

maximum length of 1.0 in. in which the in-plane buckling displacements are interpo-

lated quadratically. A minimum of two elements was used in the ring flanges and a

minimum of three elements was used in the ring webs. This choice was based on a

convergence study of the buckling loads of several cylinders, both stiffened and unstiff-

ened, and several annular plates. Convergence of the finite element analysis for buck-

ling typically occurred when the number of elements in the finite element mesh was

sufficient to accurately represent the critical buckling mode shape of the ring-stiffened

cylinder. Since the prebucHing equtibfium equations governing the response in each

structural segment are solved in closed form, the effects of a finite element mesh on

the prebucHing load distribution did not have to be considered. Hence, a detailed mesh

at the boundaries and where the shell meets a ring flange was not needed. For the

45.00 in. long, 15.00 in. radius cylinder with rings having LI and Hw dimensions

shown m Table 7.2.1, the finite element meshes used in the present study are reason-

able.
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7.3 OptimalDesignCase StudyResults

The resultsoftheoptimaldesignstudiesof theunstiffened,strap-stiffened,and

'T' ring-stiffenedcylindersappearinTables7.3.1,7.3.2,and 7.3.3respectively.In

thesetables,LD ID referstothecaseslistedinTable7.2.2,to istheoptimaltotal

thicknessof thecylinderwallof theoptimalshell,% -4-45,%90, and %0 representthe

optimaldistributionsof thethicknessesof layershaving+45 °,90°,and 0° fiberori-

entationangles,respectively,as a percentageof t,,NORM. WT. istheoptimalweight

of theshelldividedby theweightof thecorrespondingperfect(/z= 0),unpressurized

(p = 0)optimaluns6ffenedcylinder(Table7.3.1,LD ID I,4,7, I0,and 13),t/is the

optimaltotalthicknessof thestrapinTable7.3.2or the'T' ringflangeinTable7.3.3,

LF istheoptimallengthofthestrapinTable7.3.2orthe"T' ringflangeinTable

7.3.3,Hw istheoptimalradialdepthoftheweb of the"r' ringinTable7.3.3,and %

RING WT. isthetotalweightof theringsexpressedasa percentof theweightof the

optimalring-stiffenedcylinder.In Tables7.3.4,7.3.5,and 7.3.6,theactiveconstraints

and the Lagrange multipliers corresponding to these active constraints associated with

the optimal designs shown in Tables 7.3.1, 7.3.2, and 7.3.3 are listed. Under the head-

ing "Stability ConstroJnts", the circumferential wave numbers of the buckling mode

shapes associated with the active stability constraints are presented. While lower bound

side constraints, X #, were active in several optimal designs, in no case was an active

upper bound side constraint, X", observed. Note that in some cases (Table 7.3.5, LD

ID 8, 10, and 14) stability consu'alnts associated with more than one circumferential

wave number were active at the final optimal design. Also note the magnitudes of the

Lagrange multipliers associated with the active stability constraints. The small values

reflects the observation, noted in section 6.6.2, that the gradients of the stability con-

straints become very large as these constraints become active and that generous "buffer

zones" around these constraints (more generous, perhaps, than those used in the present

study) can be used.

Before proceeding to a critical evaluation of the optimal designs, an example of
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the existence of more than one local minima in the design space is presented. This

is the optimal unstiffened cylinder design associated with LD 113 13 in Table 7.3.1.

Both of these designs satisfy the Kuhn-Tucker conditions; furthermore, as an additional

check, stability analyses were performed on new designs located at I0 equally spaced

points alohg the vector connecting the two optimal designs within the design @ace. At

each one of these design points, except, of course, the end points, at least one stability

constraint was violated. This indicates that the two designs are, indeed, local optima.

Note, from Table 7.3.1, that the two designs are very different; however, the weights

of these designs (both normalized with respect to the weight of the lighter design) dif-

fer by only 2%. This reflects a feature of the problem that was observed many times

during the course of the search for the optimal designs - that many non-optimal de-

signs (non-optimal meaning designs that did not satisfy the Kulm-Tucker conditions)

that have weights within a few (5) percent of the weight of the true optimal design ex-

ist in the design space. This characteristic of the design space, sometimes referred to

as "flamess", indicates that it is possible to change the optimal design to a non-optimal

design, perhaps due to some requirement not considered in the present study, without

paying a substantial weight penalty.

7.3.1 Unstiffened Cylinder Case Studies

The optimal thickness distributions of the 4-45 °, 90 °, and 0 ° layers of the unstiff-

ened cylinders, listed in Table 7.3.1, are plotted in Figs. 7.3.1 through 7.3.3 as percent

of the total shell wall thickness to versus LD ID number. No results are listed for LD

ID 14 since the straps in optimal strap-stiffened design associated with this LD ID (Ta-

ble 7.3.2) virtually vanished. The numbers in parentheses in Figs. 7.3.1 through 7.3.3

indicate the ratio of torsional (shear) loading (Nxy) to ay_al loading (Nx). Note, from

Table 7.2.2, that this relative amount of torsional (shear) loading to axial compressive

loading, also denoted by the ratio Nxy : Nx, increases with increasing value of the

LD ID appearing along the horizontal axis of each of the three figures (7.3.1 through
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7.3.3). For theperfect,unpressurizedcylindersaddressedin Fig. 7.3.1, the optimal de-

signs are made up mostly of +45 ° and 0 ° layers in all cases except LD ID 1 - pure ax-

ial compression. However, as illustrated in Fig. 7.3.2, when the initial imperfection is

accounted for the thickness of the 90 ° layer is substantially greater than the 90 ° layer

thickness in the corresponding perfect cylinder optimal design. As shown in Fig. 7.3.3,

the optimal designs in the imperfect, pressurized case also have substantially thicker

90 ° layers than the corresponding perfect, unpressurized optimal cylinders and almost

no 0 ° layers. Hence, the addition of internal pressure to the imperfect cylinder does

not "negate" the effect of the imperfections on the optimal designs. Also, while the

sizing of the perfect shell indicates striking differences in the optimal design of cylin-

ders subjected to pure axial compression compared to those subjected to some amount

of torsional loading, these differences are much less striking when initial imperfections

are accounted for. For combined axial compression and torsional loading (LD ID 4, 7

and 10 in Fig. 7.3.1, LD ID 5, 8 and 11 in Fig. 7.3.2, and LD ID 6, 9 and 12 in Fig.

7.3.3,), the inclusion of initial imperfections w_sults in the optimal cylinder appearing

less like the optimal design of the cylinder subjected to pure torsion and more like that

of a cylinder subjected to pure compression.

Fig. 7.3.4 depicts the effects of imperfections and internal pressurization on the

optimal weights of the unstiffened cylinders. Only the LD ID numbers associated with

the perfect, unpressurized configuration is indicated on the horizontal axis of this fig-

me. For example, LD ID 1 identifies the perfect, unpressurized cylinder loaded in pure

compression; however, the optimal weights of the imperfect,unpressurized (LD ID 2),

and imperfect, pressurized (LD ID 3) cylinders are also identified by LD ID 1 since

the mechanical loading (axial compression) is the same for LD ID 1,2, and 3. For

each value of LD ID, the optimal weights are normalized with respect to the optimal

weight of the perfect, unpressurized cylinder associated with that value of LD 113. In

all of the cases shown, the optimal weights (and thus the optimal total cylinder wall

thicknesses)of the imperfect, unpressurizedcylindersare substantially(10% or more)
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greaterthan the optimal weight of the corresponding perfect, unpressurized cylinder.

This weight difference is a function of the relative amount of torsional to axial loading

(.N'Xy : .N'X) that the cylinder is subjected to. The higher this ratio, the lower the dif-

ference. For example, when Nxy : Nx is 0 Ct,D ID 1) the difference is almost 50%;

however, when Nxy : Nx is 1:1, the difference is 10%. This observation quantifies,

in terms of optimal weight, what the buckling interaction curve of Fig. 7.1.2 quantifies

in terms of buckling loads - that the imperfection sensitivity of the cylinder increases

as the ratio of axial compression loading to torsional loading increases. The effects of

pressurization on the optimal designs of the imperfect cylinders, also depicted in Fig.

7.3.4, will be discussed after a brief explanation of the observed effects of imperfec-

tions on the optimal designs.

The facts that the inclusion of the initial geometric imperfection results in both

an increase in the total cylinder wall thickness and a substantial increase in the percent

thickness of the 90 ° layers can be explained by considering the particular solution (Eq.

(4.1.32)) to the equation governing the prebuckling radial displacement of the cylinder

wall (Eq. (4.1.27)). The contribution to this particular solution from the initial imper-

fection is

= 2 co ,ox (7.3.1.1)

where

A" = /_ 2N'x (7.3.1.2)
al _4 -- a2 _2 "{" a3"

For the balanced, symmetric cylinder wall laminate considered in the present study,

replacing the terms in Eq. (7.3.1.2) with the dimensional terms listed in Table 1 yields

_ l_ Nx L 2 (7.3.1.3)
Nx L 2 + 2_DII/A_2 Z t,

or

_= pNX (7.3.1.4)
1VX + (2/R)JD1][A22 -- (A_2/An)]
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To reduce the radial shell wall deformations induced by the initial imperfection in the

presence of the axial load, the denominator of Eq. (7.3.1.4) should be as large as pos-

sible. This can be accomplished by increasing the axial bending stiffness, D11, of the

cylinder wall, the hoop membrane stiffness, A22, of the cylinder wall, or a combination

of the two. This is why the optimal designs of the imperfect shells are thicker than the

corresponding perfect designs and that most of this additional thickness is made up of

90 ° layers. The increase in the size of the 90 ° layer raises the hoop membrane stiff-

ness and moves the 4-45 ° layers further away from the middle surface of the cylinder

waiL

A final trend indicated in Fig. 7.3.4 is that the optimal weights of the pressurized,

imperfect cylinders are substantially smaller than the optimal weights of corresponding

unpressurized, imperfect cylinder. For LD ID 10 (NxY : Nx - 1 : 1), the optimal

weight of the pressurized, imperfect cylinder is 28% smaller than the unpressurized

perfect cylinder;, however, for LD ID 1 (Nxy : Nx -- 0) the optimal weight of the

imperfect, pressurized cylinder is only 10% smaller than the optimal weight of the un-

pressurized, imperfect cylinder. This information again quantifies, in terms of optimal

weight, what is quantified in terms of buckling loads in the buckling interaction curves

of Fig. 7.1.2 - that the added capability of the cylinder to resist buckling due to the

addition of internal pressure increases with an increase in the ratio Nxy : Nx.

7.3.2 Ring-Stiffened Cylinder Case Study

7.3.2,1 Discussion of Optimal Design Detail Trends

The optimal sizing results for the strap-stiffened cylinders, reported in Table 7.3.2,

are plotted in Figs. 7.3.5 through 7.3.7. The optimal sizing results for the "T" ring-

stiffened cylinders, reported in Table 7.3.3, are plotted in Figs. 7.3.8 through 7.3.10.

The additional ring weight parameter plotted in Figs. 7.3.5 through 7.3.7 and Figs.

7.3.8 through 7.3.10 indicates the weight of the rings (swaps or "r"s) of the optimal

designs as a percentage of the total weight of the optimal ring-stiffened cylinder de-
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s_gn.

Figs. 7.3.5 through 7.3.7 and Figs. 7.3.8 through 7.3.10 indicate that the trends in

the distribution of the cylinder wall layers thicknesses are similar to those trends ob-

served in the case study of the unstiffened cylinders that was discussed in detail in sec-

tion 7.3.1. The only measurable difference between the unstiffened and ring-stiffened

cylinder wall layer thickness distributions is that the optimal ring-stiffened cylinders

have a larger percentage of -4-45 ° layers than the corresponding optimal unsliffened

cylinders do.

As shown in Table 7.3.2, in every design where a ring of substantial stiffness is

called for, the optimal strap design has a length of the lower bound value of 1.00 in.

and, as shown in Table 7.3.3, the optimal '*r" ring design is one with a thin narrow

flange (generally a flange with a lower bound length of 1.00 in.) and a thin deep web.

A plot of the total ring weights of the optimal strap-stiffened and 'T' ring-stiffened

cylinders as a percent of the total weight of the optimal ring-stiffened cylinder, shown

in Fig. 7.3.11, illustrates that for all but LD ID 9, the op_ strap designs are many

limes heavier than the optimal "T" ring designs. All of these observations indicate that

the rings _e s-ized-for Op_al ben-ding sliffness, _ occurs because the critical buck-

ling mode shapes of the cylindrical shell, the formation of which the rings must be

designed to resist, are generally asymmetric. Such a buckled configuration, should it

occur, would result in substantial bending of the rings.

Another issue that can be addressed with the results of these optimal sizing case

studies is whether or not the presence of initial imperfections in the cylinder wall im-

pact the designs of the rings in the optimal cylinder significantly. Looking at Fig. 7.

3. 8, the plot of the optimal designs for the perfect, unpressurized, "T' ring-stiffened

cylinders, it is clear that the percent ring weight increases with increasing Nxy : Nx;

however, this trend is not so clear in Fig. 7.3.9, the plot of optimal designs of the cor-

responding imperfect, unpressmized cylinders. To see why this is so, the ring weight

percentages in the optimal "I" ring-stiffened cylinders sized for three different val-
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ues of -Nxy : Nx are plotted in Fig. 7.3.12 for both the perfect, unpressurized and

imperfect, unpressurized configurations. It is clear from this figure that the presence

of imperfections in the cylinder wall can result in significant ring weight increases in

the optimal cylinders when compared to designs where imperfections are ignored. For

example, for a ratio Nxy : Nx of h4, the weight of the "T" rings of the optimal per-

fect, unpressurized cylinder is only 0.500% the total weight of the structure while the

weight of the '*r" tings of the optimal imperfect, unp_ cylinder is 1.3% of the

total weight of the optimal structure - an increase of 160%! It is postulated that this in-

crease in the percent ring weights in the optimal imperfect cylinders is most likely due

to the ability of the imperfections to trigger premature buckling of the ring webs. This

ability is illustrated in Figs. 7.1.7 through 7.1.9 and discussed in section 7.1.

7.3.2.2 Discussion of Optimal Weight Trends

In Figs. 7.3.13 and 7.3.14, the optimal weights of the ring-stiffened cylinders have

been normalized with respect to the optimal weights of the corresponding perfect, un-

pressurized, unJti_ened cylinders. The effects of imperfections and pressurization on

the optimal total weights of the ring-stiffened cylinders, illustrated in Figs. 7.3.13 and

7.3.14, are the same as the effects of these parameters on the optimal total weights of

the corresponding unstiffened cylinders illustrated in Fig. 7.3.4.

The buckling interaction curves of Figs. 7.1.4 through 7.1.6 indicate that the ad-

dition of tings can increase the capability of an unstiffened cylinder to resist buckling

substantially when some amount of torsional loading is present. This phenomenon is

quantified in terms of the weight saved in the optimal designs of the cylinder as shown

in Fig. 7.3.15. In this figure, the percent difference in weight between the optimal

strap-stiffened or "r" ring-stiffened cylinders and the corresponding optimal unstiffened

cylinders is plotted for various values of LD ID. As to be expected from a considera-

tion of Fig. 7.3.11, the 'T' ring-stiffened cylinders are substantially more efficient than

the corresponding strap-stiffened cylinders. Furthermore, the addition of ring-stiffening
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yields significant weight savings even when the ratio of torsional load to axial load

is small For example, LD ID 5 corresponds to an imperfect cylinder having a ratio

Nxy : Nx of only 1:4; however, the addition of rings to the unstiffened cylindri-

cal shell subjected to this loading still produces a 6% savings in weight. Of course,

as shown in Fig. 7.3.15, the weight savings are many limes greater in cases where the

cylinder is loaded by more substantial amounts of torsion. This reflects the observation

made about Figs. 7.1.4 through 7.1.6 in section 7.1 - that the effect of adding rings to

the unstiffened cylinder on the buckling resistance of the su'ucmre increases with an in-

crease in the ratio Nxz : Nx. For example, adding "T" ring-stiffeners to the imperfect

cylinder loaded by torsion and axial compression in the ratio Nxy : Nx of 1:1 CLD ID

11) yields a weight savings of 17%!

Two other observations made in section 7.1 concerning Figs. 7.1.4 through 7.1.6

were that the net increases in the buckling loads that occurred when rings were added

to the perfect, unpressuriz.ed, unstiffened cylinder were reduced when imperfections

were accounted for in the analysis, and that these net increases were drastically reduced

when the imperfect cylinder was pressurized. This is reflected in the overall drop in

the amount by which the optimal weight of the ring-stiffened cylinder differs from

the weight of the corresponding optimal unsfiffened cylinder, as is illustrated in Fig.

7.3.15 when a weight savings associated with a perfect, unpressurized configuration

(LD ID 4,7, and 10) is compared to the weight savings associated with an imperfect-

unpressmized (LD ID 5,8, and 11) or imperfect-pressurized configuration (LD ID 6 or

9). This drop in weight savings for three "T" ring-stiffened cases is more clearly illus-

trated in Fig. 7.3.16. For example, LD ID 7 corresponds to a perfect, unpressurized

cylinder subjected to axial compression and torsional loading in the ratio Nxy : Nx

of 1:2. For this LD ID, adding the two 'T' ring stiffeners produces an optimal weight

savings of 16%; however, in the corresponding imperfect case CLD ID 8), the weight

savings is reduced to 11%. When the internal pressure is included (LD ID 9) the total

weight savings due to the addition of the 'T' ring stiffeners is only about 5%. The
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lack of effect the tings have in increasing the buckling resistance of the imperfect,

pressurized cylinders is also demonstrated by comparing the percent ring weights of

the optimal imperfect, pressuriz_ cylinders (Fig. 7.3.? for the strap-stiffened cylinders

and Fig. %3.10 for the 'T' ring-stifle.ned cylinders) to the percent ring weights of the

optimal perfect and imperfect, unpressutiz_ cylinders (Figs. 7.3.5 and 7.3.6 for the

strap-stiffened cylindexs and Figs. 7.3.8 and 7.3.9 for the 'T' ring-stiffened cylinders).

The percent ring weights of the optimal imperfect, pressurized cylinders are substan-

tially smaller in each case than the percent ring weights of the corresponding perfect

and imperfect unpressurized cylinders.
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7.4 Stress Constraints

In this section, the stress constraints described in section 6.5 are addressed. Under

the assumption that the stability constraints described in section 6.6 would be critical

for design, the stress constraints were ignored during the optimal sizing of the cylinders

described in section 7.3. It is appropriate at this point, therefore, to perform a stress

analysis of the optimal cylinders in order to check the validity of the assumption of

stability constraint criticality. This stress analysis is based on a lamina stress analysis

of the cylinder skin (see Appendix A), a lamina stress analysis of the ring webs (in-

terlaminar stresses ignored), and an analysis of the through-the-thickness normal (or

"peel") stresses and transverse shear stresses in the adhesive used to bond the straps

(or "l" rings) to the cylinder wall. Initial geometric imperfections in the cylinder wall

are ignored for stress analysis purposes. Imperfections are ignored because the initial

imperfection shape used in the present study, Eq. (4.1.25), was chosen because of the

strong coupling demonstrated to exist between this imperfection and asymmetric buck-

ling mode shapes, not necessarily because of its true representation of real "unperfection

distributions. Lamina stresses are calculated at the extreme surfaces of each layer of

the cylinder skin or ring webs at stations spaced 0.10 in. apart. Adhesive stresses are

calculated at stations approximately 0.05 in apart along the length of the strap or the

flange connecting the "T' ring to the cylinder wall. At each station, the stress con-

straints (Eqs. (6.5.1) through (6.5.6)) are evaluated as is appropriate. At the ring/skin

interface, the interlaminar failure constraints of Eqs. (6.5.5) and (6.5.6) are evaluated

with respect to the allowable stresses of the adhesive, listed in Table 7.1.3 along with

the rest of the assumed material properties of this adhesive, and the allowable stresses

of the inner-most cylinder skin layer of graphite-epoxy tape, listed in Table 7.1.1, to

which the adhesive is applied. Before proceeding to a discussion of the results of the

stress analysis of the optimal cylinder designs, a brief discussion of the nature of the

stresses in the ring flange/cylinder skin interface is presented.
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7.4.1 Ring Flange/Cylinder Skin Interface Stresses

In order to investigate the nature of the stresses in the ring flange/cylinder skin

interface, a "F' ring-stiffened cylinder having the same configuration as the one used

as the initial design for the 'T' ring-stiffened cylinder optimal sizing case studies de-

scribed in section 7.3.2 is considered. This cylinder is 45.0 in. long, has an inner sur-

face radius of 15.00 in., and is made of a [-45s/45s/90s/0s]s laminate of graphite-

epoxy tape having the material properties listed in Table 7.1.1. It is stiffened by two

equally spaced rings as shown in Fig. 7.2.1. Two different ring configurations are

considered. The first configuration has L/ = 2.0 in., ttw - 3.0 in., and N! = 1

(t! = 0.042 in.) (see Table 7.2.1). This first configuration was chosen to approximate

a ring having a long, thin attachment flange. The second configuration has L! --- 1.0

in., Hw -- 3.0 in., and .AT/--- 4 (ty -- 0.168 in.). This second configuration was chosen

to approximate a ring having a short, thick attachment flange. The ring-stiffened shell

is assumed to be subjected to an axial compression load of 250000. lbs., a torsional

load of 1875000. in.-lbs., and an intenud pressure load of 70.0 psi.

The resulting distributions of adhesive through-the-thickness normal (or "peel")

stresses, o'zz = o'33, and transverse shear suess_, _'xz : 7"13 and ryz = _'23 (see

Fig.4.4.1) for the two ring configurations are plotted in Figs. 7.4.1, 7.4.2, and 7.4.3 re-

spectively for one of the ring stiffeners. The web of this ring is located at z = -7.50

in., the two edges of the long flange are located at z = -8.50 in. and z - -6.50 in.,

and the two edges of the short flange are located at z - -8.00 in. and z = -7.00 in.

In their analysis of skin/stiffener interface stresses in composite stiffened panels, Wang

and Biggers s° demonstrated that at the free edges of the flanges that attach the stiffener

to the panel skin, these adhesive slresses peak sharply in a narrow region adjacent to

the free edge of the flange. Figs. 7A.I through 7.4.3 demonstrate that this is also true

of the stresses in the ring flange/cylinder skin interface region. The peel stresses (Fig.

7.4.1) also peak in a region directly below the point where the ring web and flange are

joined, as is to he expected since the stiff web restrains the flange/skin combination
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from outwardradial expansionunderthe action of the internal pressure. There is a sig-

rdficant difference in the distribution of the through-the-thickness normal stress beneath

the long, thin ring flange and the short, thick flange. The long, thin flange only tends

to separate from the cylinder skin directly beneath the ring web, while the short, thick

flange shows a very strong tendency to separate from the cylinder skin in a narrow

region near the free edge of the flange. These observations are consistent with those

reported by Wang and Biggers so for the flat stiffened panels.

The rxz transverse shear stress distributions illuswated in Fig. 7.4.2 also show

peak values occurring in a narrow region near the free edge of the flange. Actually,

rxz beneath the free edge of the flange should be zero; however, the simplified treat-

ment of the adhesive as a set of shear springs in the present study does not allow for

enforcement of the condition 7"xz = 0 at this edge. In their study of tubular lap joints,

Adams and Peppiatt °s used a more detailed model of the adhesive to show that the

transverse shear stress corresponding to 1"xz in the present study actually peaks very

close to the edge of the adhesive then drops to zero at the edge very suddenly. Hence,

while the simplified adhesive model used in the present study does not allow for en-

forcement of 7"xz = 0 at the edge of the adhesive, it does appear to allow for reason-

able prediction of this adhesive stress up to, but not including, this edge.

As sho_ in Fig. 7.4.2, the stress state adjacent to the free edge of the long, thin

flange issubStanfially more severe than _ s_ state adjacent to the free edge of the

short, thick flange. This result is consistent with the observation made by Wang and

Biggers s° that to minimize the maximum value of this 7"xz shear stress, a minimum

practical flange length should be used. The rrz transverse shear distributions appear

in Fig. 7.4.3. Once again, the peak values occur in a narrow region adjacent to the

free edge of _ flange. The curves plotted in Fig 7.4.3 show that the difference in

the distributions of the rrz transverse shear stress beneath the long, thin flange and

the short, thick flange is not as pronounced as the corresponding difference in the dis-

Iributions of the _'xz transverse shear stress. Furthermore, the peak stress at the free
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edge of the short, thick flange is about 50% higher than the peak stress at the free edge

of the long, thin flange. This is also consistent with the observations of Wang and

Biggers s°. They showed that the rrz stress distribution is not sensitive to the flange

length and that the peak ryz transverse shear stress increases with along with an in-

crease in flange thickness. The conflicting effects of the various ring flange parameters

on the various adhesive stresses indicate that a ring flange design may exist producing

optimal ring/skin joint strength.

7.4.2 Results of Stress Analyses of Optimal Cylinders

The results of the stress analyses of the optimal strap-stiffened and "T' ring-stif-

fened cylinders are listed in Tables 7.4.1 and 7.4.2 respeclively. The optimal cylinder

design is identified by LD 123 in the first column. Stress analyses were not performed

on the optimal unstiffened cylinders since the optimal layer thickness distributions of

the corresponding optimal ring-stiffened cylinders were very similar and the cylinder

wall total thicknesses of the ring-stiffened cylinders were all smaller than the corre-

sponding tmstiffened cylinders. In Tables 7.4.1 and 7.4.2, the minimum values of the

constraints associated with a cylinder skin lamina fiber direction failure (Eqs. (6.5.1)

and (6.5.2)), an in-plane lamina matrix cracking failure (Eqs. (6.5.3) and (6.5.4)), and

an interlaminar-type failure (T.qs. (6.5.5) and (6.5.6)) in the ring/skin interface region

are listed. Also listed are the locations of the minimum values of the cylinder skin

lamina fiber direction and in-plane matrix cracking stress constraints in terms of the

normalized meridional coordinate X (X = +0.500 at the extreme ends of the cylin-

der) and the cylinder wall laminate layer where these minimum constraint values oc-

cur. A "T' is used to indicate that an in-plane tension failure constraint (Eq. (6.5.1) or

(6.5.3)) is critical while a 'C" is used to indicate that an in-plane compression failure

constraint (Eq. (6.5.2) or (6.5.4)) is critical. The letters "AT' indicate that an adhe-

sive tension failure constraint (Eq. (6.5.5)) is criticaL The letters "AC" indicate that

an adhesive compression failure constraint (Eq. (6.5.6)) is critical. Stresses in the ring
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webs did not produce constraint values smaller than the values listed in Table 7.4.2 in

any case. Furthermore, the interlaminar stresses in the cylinder skin calculated using

the method outlined in section A.2 of Appendix A were small in every case consid-

ered. Interlaminar shear stresses, calculated using the method of section A.2, were less

than 2000 psi in each case; furthermore, the maximum calculated through-the-thickness

tensile normal stress, calculated using this method, was 100 psL

In Tables 7.4.1 and 7.4.2, positive minimum constraint values indicate stress con-

straint satisfaction; negative constraint values indicate stress constraint violation. The

dashes indicate constraints equal to 1.0 for all practical purposes. In all but one case

CLD ID 14 of the optimal strap-stiffened cylinder designs), the optimal cylinder de-

signs lie well within the feasible domain defined by the stress constraints alone. Fur-

thermore, except for LD ID 13, critical constraint values typically occur either at the

clamped ends of the cylinder or in the cylinder wall bending boundary layer adjacent

to these ends. The cylinders corresponding to LD ID 13 are loaded in pure torsion; the

minimum constraint values occur in the cylinder skin at X = 0.178. This is adjacent to

the edge of a swap or ring flange.

The large positive values of the stress constraints indicate that the assumption of

stability constraint criticality was reasonable in every case except the strap-stiffened

cylinder associated with LD ID 14. In this case, which is for the cylinder subjected to

torsion and internal pressure without axial loading, an in-plane matrix cracking con-

straint at the clamped end of the cylinder is violated. All other stress conswaint values

are large positive numbers. In his study of presstad.zed cylindrical panels, Boitno_ 4,

observed during his experiments that he could not detect any damage in the graphite-

epoxy panels until the pressures reached values substantially higher than those pre-

dicted to produce in-plane matrix cracking failures. Hence, a comparison of the op-

timal designs of the strap-stiffened cylinders in which in-plane matrix cracking con-

straints are satisfied with those in which these constraints are violated, with all other

constraints satisfied, is of some interest. The strap-stiffened cylinder was re-sized for
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LD ID 14 with additional constraints added to prevent violation of the in-plane ma-

trix cracking conswaints at the clamped end. The new optimal design, satisfying all

stress constraints, and the design from Table 7.3.2, in which the in-plane matrix crack-

ing stress constraint is violated, appear below.

Design Variable Matrix Cracking No Matrix Cracking

to 0.05053 in. 0.07815 in.

% 4-45 97.269 64.985

% 90 0.974 35.002

% 0 1.757 0.013

t/ 0.0059 in. 0.0000 in.

L/ 1.000 in. 1.000 in.

Buckling Ac,. 1.000 1.32

Norm. Wt. 1.000 1.469

Note that the weights of the optimal designs are normalized with respect to the weight

of the optimal strap-stiffened cylinder design violating the in-plane matrix cracking

constraint (the lower weight design), Also note that the stability constraint for the de-

sign satisfying the in-plane matrix cracking stress constraint is not active. To satisfy

the in-plane matrix cracking constraint, a 90" layer that is significantly larger than the

90 ° layer in the optimal design where this constraint is violated is needed. Further-

more, it is readily apparent that a significant penalty in optimal weight is associated

with enforcing the satisfaction of the in-plane matrix cracking constraint in this case.

7.4.3 Internal Pressure To Failure

The final portion of the present study involves an investigation of the su'e_ fail-

ures occurring in the optimal ring-stiffened cylinder design of Tables 7.3.2 and 7.3.3

due to the application of their design mechanical loads (axial compression and torsion)

along with internal pressures that are higher than those for which the cylinder was

sized. This investigation is performed by predicting, for each optimal strap-stiffened
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and 'T' ring-stiffened cylinder, the value of internal pressure at which a stress failure

is first likely to occur. The results of this study are listed in Table 7.4.3 for the optimal

strap-stiffened cylinders and in Table ?.4.4 for the optimal 'T' ring-stiffened cylinders.

The form of these tables is the same as the form of Tables 7.4.1 and ?.4.2, except the

constraint values listed are for the cylinders subjected to the mechanical loads associ-

ated with the LD ID indicated in the first column and the internal pressure to failure

indicated in the second column. Furthermore, the letters "CT" indicate that an inter-

laminar tension failure constraint (Eq. (6.8.8)), at the innermost layer of the cylinder

wall to which the adhesive bond is applied, is critical.

Wang and Biggers s° mention that the stresses in the flange/skin interface region

of flat stiffened graphite-epoxy panels are particularly sensitive to the laminate stack-

ing sequence of the stiffener flange. Hence, for the three cases in Table 7.4.3 where the

indicated first failure in the optimal strap-stiffened cylinders is predicted to occur due

to high adhesive through-the-thickness normal and transverse shear stresses (LD ID 8,

10, and 13) a new pressure to failure was calculated for the shell having straps with

the stacking sequence [0Ns/45Ns/45N_]7" instead of [_,SN,/ON,/45S_ ]T. Note that

the new strap laminate is unsymmetric. A check of the buckling loads of the optimal

cytinders having straps with the new stacking sequence indicated that the effect of this

change on the buckling load was negligible. In all three cases, the internal pressure

to failure of the cylinders with the unsymmetrically laminated straps increased. These

increases are illustrated in Fig. 7.4.4. The failure pressures in this figure are normal-

ized with respect to the failure pressure of the cylinders with symmetrically laminated

straps. Note that for LD ID 8 and l0 the internal pressures to failure of the cylinders

with the unsymmetrically laminated straps are 120% and 40% higher, respectively,

than the internal pressures to failure of the cylinders with the symmetrically laminated

straps. The increase in failure pressure of the cylinder sized for torsional mechanical

loading only (LD ID 13) is not as high as the cylinders sized for both axial compres-

sion and torsional loading. The failure pressures of the cylinders with the unsymmet-
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ricaUylaminatedstraps are higher since the edges of the straps curl inw the cylinder

skin as the strap stretches in the hoop direction due to the bending-stretching coupling

exhibited by the unsymmetric laminate. This curling forces the flange to conform more

with the cylinder skin as it tends to separate from the strap due to local bending under

the combined action of axial compression and internal pressure loading. This lowers

the peel stress in the adhesive substantially.

For cases in Tables 7A.3 and 7.4.4 where the first predicted failure was due to

in-plane matrix cracking, internal pressures to failure were also calculated where this

failure mode was ignored. The results of this study for the strap-stiffened cylinders

appear in Fig. 7.4.5 and for the 'T' ring-stiffened cylinders in Fig. 7.4.6. The substan-

tial increase in failure pressure illustrated in all cases, along with the result discussed

in section 7.4.2 illustrating the potential weight penalty associated with satisfying in-

plane matrix cracking strength constraints in stress constraint-crfical optimal designs,

indicates that serious study of the effects of in-plane matrix cracking on the failure of

pressuriz_ structure is warranted.
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Chapter8

CONCLUDING REMARKS AND RECOMMENDATIONS FOR FURTHER WORK

8.1 Concluding Remarks

A structural analysis has been developed to predict prebuckling deformations, pre-

buckling stresses and buckling loads of anisotropic cylinders with secondarily bonded

ring stiffeners, subjected to axial compression, torsion, and internal pressure. The struc-

tnre is modeled as a branched shell. A nonlinear axisymmetric prebuckling equlibrium

state is assumed which is amenable to exact solution within each branch. A simple

analytical model, characterized by the approximate treatment of the adhesive layer as

a series of uniformly distributed shear and extensional elastic springs, is employed to

predict prebuckling stresses in the ring flange/cylinder skin interface region. Stress re-

sultants and stress couples generated using the exact solutions are applied as boundary

conditions to this model. Buckling displacements are represented by a Fourier series

in the circumferential coordinate and the finite element method in the cylindrical shell

axial coordinate or ring web radial coordinate.

Several case studies were conducted using this structural analysis in order to as-

sess the effects of imperfections, pressurization, and ring stiffening on the buckling

loads and mode shapes of a cylindrical shell. It was demonstrated that a nonlinear pre-

buckling analysis is needed to accurately predict buckling loads and capture the buck-

ling mode shapes of ring-stiffened cylindrical shells. It was found that the effect of

rings on the buckling resistance of the cylinder is very sensitive to the relative mag-

nitudes of axial compression loading, torsional loading, and internal pressure loading

to which the structure is subjected. The rings become more effective as the relative

magnitude of the torsional loading to axial compression loading is increased. The rings

become less effective when the amount of internal pressure loading is increased.

The structural analysis was then implemented in an optimal sizing algorithm. An

equivalent stability constraint, formulated based on the LDL T decomposition of the
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sumof theglobal finite element stiffness and geometric stiffness matrices, was used in

order to avoid having to repeatedly solve the nonlinear eigenvalne problem associated

with the calculation of buckling loads and mode shapes. Using a combination of in-

direct (penalty function) and direct (feasible direction) optimization methods, optimal

designs of a 15.0 in. radius, 45.00 in. long ring-stiffened cylinders were determined.

These optimal designs were characterized by up to six design variables and satisfied

the Kuhn-Tucker conditions. In one case, two local optima were demonstrated to exist

in the design space. While the designs of these two optima were much different, their

weights differed by only 2%. The presence of the axisymmetric initial imperfection

in the cylinder wall can affect the optimal lamina thickness distributions of the cylin-

der wall, the optimal ring sizes, and the optimal weights of the ring-stiffened cylinder

significantly. The optimization algorithm effectively locates designs which minimize

the effects of the nonlinear deformations caused by the axisymmetric imperfection.

Weight savings associated with the addition of two rings to the unstiffened cylinder

were shown to be 5% for cylinders loaded with torsional and axial compression load-

ing in the ratio of 1:4; however, this weight savings increased to 17% for cylinders

loaded with torsional and axial compression loading in the ratio of 1:1. Accounting for

internal pressurization in the optimal sizing of the imperfect cylinders produced designs

having significantly smatler rings than the corresponding unpre_urized cylinders. As

discussed in section 2.2.1, Hutchinson 2s indicated that the presence of internal pressure

tended to "iron our' the effects of certain imperfection shapes on the axial buckling

load. Hence, a designer of the pressurized, imperfect cylinder may be tempted to pro-

pose a design closely resembling the optimal perfect, unpressurized cylinder. However,

it has been shown that the optimal cylinder wall lamina thickness distributions of the

pressurized, imperfect cylinders more closely resemble the optimal lamina thickness

distributions of the imperfect, unpressurized cylinders rather than the optimal lamina

thickness distributions of the perfect' unpressurized cylinders. Assuming the presence

of internal pressure "irons out" the effects of initial imperfections on the optimal de-
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sign is flawed. The optimal designs of these imperfect, pressurized cylinders are sub-

stantially lighter than the optimal designs of the corresponding imperfect, unpre_ufized

cylinders when torsion makes up a significant fraction of the combined load state that

the cylinder is subjected to.

Locations of regions exhibiting peak stresses varied fi'om case to case. Stresses

in the adhesive layer bonding the ring stiffeners to the cylinder wall peak sharply in a

narrow region adjacent to the free edge of the ring flange. The through-the-thickness

normal stress also peaks beneath the ring web. Cylinder wall lamina stresses tend to

be greatest at the clamped ends of the cylinder or in the adjacent shell wall bending

boundary layer. In all but one optimal sizing problem considered in the present study,

the assumption of criticality of the stability constraints and neglect of the stress con-

straints during the optimal sizing of the cylinders produced designs that nevertheless

satisfied all of the stress constraints as well as the stability constraints. In one case,

neglect of the stress constraints resulted in an optimal design that violated an in-plane

matrix cracking constraint at the clamped end of the cylinder. Subsequent re-sizing

of the cylinder to satisfy this constraint resulted in an optimal design that was 49%

heavier than the optimal design produced when the in-plane matrix cracking stress con-

swaint was ignored.

Ultimate suengths of the optimal ring-stiffened cylinder designs were evaluated

based on a calculation of the internal pressure necessary to produce a violation of one

of the stress constraints. It was demonstrated that by using an unsymmctrically lami-

nated ring flange, a substantial increase in the strength of the ring flange/cylinder wall

joint is produced.

8.2 Recommendations for Further Work

Lacking in the present study is a series of experiments designed to verify the ob-

served design trends and response phenomena. The complexity involved in fabricating

composite ring-stiffened cylindrical shell specimens and designing and building test fix-
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rare equipment to apply combined axial compression, torsional, and internal pressure

loads to the specimens put such a detailed experimental investigation beyond the scope

of the present study. However, this study does form the groundwork for further investi-

gation into the analysis and design of more complex shell structures. With a minimum

amount of modification to the existing analysis, ring-stiffened cylinders of honeycomb

sandwich construction could be studied. Such a modification would allow for the in-

vestigation of a proposed design concept for shells having diameters and subjected to

loads more closely approximating the scale of actual aerospace hardware such as an

aircraft fuselage. Permitting more extensive modification of the existing analysis, the

first limiting assumption that should be relaxed is that of axisymmetry of the prebuck-

led equifibrium configuration.
I

The assumption of an asymmetric prebuckled equilibrium configuration would

allow for more general types of loading, including bending, that are more typical of

loads encountered by aerospace vehicle structures and would allow for consideration

of asymmetric material properties, which may be particularly important in the case of

the analysis of the laminated annular plate (see Fig. 3.2.2). Fabrication of composite

ring stiffeners having axisymmetric material properties may not be cost-effective. The

effects of circumferential variation of the material properties on the buckling loads of

these structures should be investigated further. Relaxation of the assumption of pre-

buckling axisymmetry would also permit the investigation of the response of the cylin-

drical shell with random, asymmetric initial imperfections that are more representative

of imperfection shapes present in actual structure than the axisymmetric imperfection

considered in the present study. It is suggested that the effects of such imperfections

on the prebuckimg stress state, particularly in the ring flange/cylinder skin interface re-

gion, be investigated along with the effects of random, asymmetric imperfections on

the structural stability and the optimal designs of ring-stiffened cylinders.

Discrete longitudinal stiffening could also be incorporated into the model if the

assumption of an axisymmetric prebuckling equilibrium configuration is relaxed. This
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is another design concept typical of large aerospace vehicles. Fundamental to an un-

derstanding of such a concept is the knowledge of how to design the structure with

cylinder skins that are postbuckled. Assuming the vehicle is to be designed to have

postbuckled skins, a geometrically nonlinear analysis of the vehicle structure with post-

buckled skins is warranted. Assuming that no buckling from this geometrically nonlin-

ear equlibrium state is to be allowed, stability constraints could be established using

the methods of the present study. However, should the slructure be fabricated with

secondarily bonded or co-cured stiffeners, the presence of postbuckled skins would

almost certainly necessitate a more detailed consideration of stress constraints in the

skin/stiffener interface than that of the present study.

From the standpoint of optimal design, consideration should be given to the in-

vestigation of the convergence problems discovered during the course of the present

study so that a more robust optimal design algorithm can be developed. Tailoring of

the ring flange stiffness to reduce the flange/skin interface stresses should be investi-

gated as well as adding more numerous and complex design variables to the investiga-

tion. As the technology needed for the location of globally optimum designs matures

(see, for example, Hajela TM) these techniques should be applied to the optimal design

of stiffened shell structures since it is known that the optimal sizing of these structures

is characterized by the existence of a large number of local optima. Development of a

hybrid algorithm of a global optimization technique and a method similar to one of the

two outlined in the present study would lfl_ly be a most efficient approach.
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Aij

[A°]

Bij

[B*]

B,%

Dij

[D*]

nh, (n_o"

Table 1

NOMENCLATURE

[A]-I

2 •
toAij/D11

• • • 2
A,i(D_ ) �to

½Ek(_,i)k[(_:)_ - (_-_)_]

-[AI-_[B]

t.Bq/D_l

Bij/t,

1-_E,,(_7,_),,[(_:)_- (_:-])_]

[D]- [B][A]-][B]

Dla, DI'I of cylinder wall

Dq/D_I

D*j/(D;a) °
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Ell9 E22 Orthotropic moduli

e_ Ring web/cylinder middle surface eccentricity

/

ec_ ecc/L

G12 Onhowopic shear modulus

h Total laminate thickness or adhesive layer thickness

Hw Ring web height

L Cylinder length

Mn, M_2, M12 Stress couples

Mh, M_2, Mh Buckling stress couples

M-"11, M"-'22, _17/_12 M11L2/(D[I)'t,, M22L2/(D[x)'t,,

M12L2/(D_I)'t,

"_11"_22, M--'_-12
t 2 • o 2 •

M_,L I(Dut,), M_2L /(D,,t,),

-_'11,/v22, N12 Stress_=

Nx _ IVXy Applied axial and shear stress resultants
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Nil, N_2, N;_ Buckling stress resultants

N_L2/CD_) °, N22L2/CD_l) °, N_L2/(D_) °

I 2 • I 2 • ; 2 •N12L /Dll._2L /Dn,._hL /Dn,

m

Nll Nondimensional applied axial compression load

n Number of _fercntial waves

P Applied axial compression load

P PI_sSUl_

V_/(D_) o

Qll Ell/(1 - vl2v_l)

Q22

Q12

P-_2/(1 - Vl2V'_l)

r'21E11/(1 - v12r'zl) -- v12F_u/(1 - vl2r'21)

Q66 G12

Qll cos 4 0 + 2(Qm + 2Q6e) sin 2 0 cos 2 o+

Q2_ sin 4 0
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_22 Qn sin40 + 2(Q12 + 2Qes) sin2#cos 26+

Q22cos'0

(Qn + Q22 - 4Qss)sin20cos=0+

Qi2(sin'0 + cos'0)

_6 (Qll + Qn - 2012 - 2Qes) sin 2 #cos 2 #+

Q66(sin' o + cos' 0)

(Qn - Q12 - 2QBe) sin8cos s8+

(Q,2 - Qn + 2Qee) sins0 cos0

_26 (Q,1 - Q12" 2Q66)sin s Ocos O+

(Q12 - Q22 + 2Qes)sin8 cos3 8

Radius to middle surface of cylinder

RI Radius to middle surface of ring flange

Total thickness of cylindrical shell wall

T Applied torsionalload

Ul Axial displacement (cylinder)

Radial displacement (ringweb)

Buckling axial displacement (cylinder)

Buckling radial displacement (ring web)
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D

u1

1/2

U2

It3

w

U3

VII

.1�to

Circumferential displacement (cylinder)

Circumferential displacement (ring web)

Buckling circumferential displacement

(cytinaer)

Buckling circumferential displacement

(ring web)

tt2/tj

Radial displacement (cylinder)

Normal displacement (ring web)

Buckling radial displacement (cylinder)

Buc_g radial displacement (ring web)

U3/_o

Kirchhoff shear stress resultant
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m

Vll V.L3/(Dfl)'t.

Buckling Kirchhoff shear stress resultant

Qll
t 3 •Q.L I(D.to)

too Cylinder initial geometric imperfection

U)o wolf.

m

Z

.L/R

Shear strain with respect to load-oriented(slobal)axes

w

7zu, 712 %,(Lit.p, ,./,_(L/t.)_

_12 Mechanical shear strain with respect to load-oriented

(global)axes of imperfect cylinder

A

"Y12

Normal strainswith respectto load-oriented(global)axes

_zz_ _UY' _11, _22 _=.(L/t,) =, _,,(L/t,) =, _, (Lit,) =, _22(z,/t,)2
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Mechanicalnormalstrainswith respectto load-oriented

(global)axesof imperfectcylinder

m

Ell) E22 _'n(L/t.) 2, _'22(L/t.)2

'_zz) /ggg_ Kll) _22
Curvatures with respect to load-oriented (global) axes

,_..(L21t.), _,,(L21_.), _,,(L21t.), _22(L21t.)

KlI_K22
Mechanical curvamre_ with respect to load-oriented

(global) axes of imperfect cylinder

"_,_(_21t.),_22(L21t.)

Axial coordinate (cylinder)

Radial coordinate (ring web)

_2
Circumferential coordinate (cylinder)

Circumferential coordinate (ring web)

_3
Radial coordinate (cylinder)

Normal coordinate (ring web)

Thickness coordinates of surfaces of k Ch lamina
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COl'It anglo

Lamina fiber orientation angle

Load parameter

Theoretical buckling load parameter of

ring-stiffened cylinder

P Imperfection amplitude / t.

1/12_ V21 Major and minor Poisson's ratios

x Stress function (ring web)

Axisymmetric imperfection frequency

II Total potential energy

n

II nL /Dht2,

ffzz_ G_y_ Gzz Normal stresses with respect to load-oriented (global) axes

r_z, rzz, 7"z_ Shear stresses with respect to load-oriented (global) axes

[]T, ({ }T) Transpose of matrix [] (vector { })
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()° Indicates ( ) is a plate or shell midplane quantity

( )¢'*or()" Indicates ( ) pertains to the cylinder wall

( )web Indicates () pertains to the ring web

()P Indicates ( ) pertains to the initial imperfection

()e Indicates ( ) pertains to finite element e

(') O()lO_

Indicates ( ) is a vector quantity

F Objective function (total strucaaal weighO

Xi Design variable

Stabilityconstraint

Stresscons_mt

Lower, upper bounds on design variables

ndn Number of design variables

nob
Number of stabLlityconstraints
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riga Number of stress constraints

Pseudo-objective function

rp Penalty parameter

P(g) Penalty function

Search direction

0 Step lengthalong

a,iAT Allowable tensile normal stress

Cr,iAC Allowable compressive normal stress

Allowable shear stress

_n Critical load parameter for a buckling

mode with n circumferential waves

A Lagrange multiplier

eK2_ Tolerence on satisfaction of Kulm-Tucker

conditions for ith design variable
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Table 7.1.1

Assumed Material Properties of Graphite-Epoxy Tape

Property Value Property. Value Property

E1

F_
GI2

VI2

tply
P

18.5 Msi o_ T 211. Ksi o33AT

1.64 Msi o Ac -204. Ksi vsAc

0.87 Msi o_ T 6.1 Ksi r_

0.30 %aAC -21.4 Ksi r_

0.005 in. ,-_ -4-13.8Ksi
0.057 lbfm 3

Value

6.1 Kai

-21.4 Ksi

4-13.8 Ksi

4-9.0 Ksi

Table 7.1.2

Assumed Material Properties of Graphite-Epoxy Woven Cloth

Property Value, Property Value Property

E1

F-a
GI2

1/12

tply
p

AT 211. Ksi10.1267 Msi o'11

10.1267 Msi o'_ c -204. Ksi
0.87 Msi o AT 211. Ksi

-204.0.04886 o22

0.014 in. 'r_ 4-13.8 Ksi

0.057 lbJin s

Value

,AT
0'33 6.1 K.si

-21.4 Ksi

4-13.8 Ksi

4-13.8 Ksi

Table 7.1.3

Assumed Material Properties of Ductile Adhesive

Property Value Property Value Property

E1

E2

G12

v12

P

Go,c/G,,,

AT 10. Ksi AT0.500 bisi o n ass

0.500 Msi o Ac -10. Ksi off

0.185 Msi o_ T 10. Ksi r_

AC -I0.Ksi r_0.35 022

0.057 lbfm s r_ 4-6.0 Ksi
0.29

Value

10. Ksi

-10. Ksi

4-6.0 Ksi

4-6.0 Ksi
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Table 7.2.1

Description of Design Variables, Side Constraints, and Initial Designs

Design Lower Upper Initial

Variable Description Bound Bound Design

N/ Number of plies in the strap 0.001 10.0 1.0

(or ring flange and web). Strap

(or ring flange and web) is a

[45NJONs 145NI ]T clothlaminate.

L! Strap length (or ring flange length). 1.000 4.0 2.000

H. Ring web radial depth. 0.10 6.0 3.000

N4s Number of 45 ° pliesin the skin. 0.001 none 5.0

Ng0 Number of 90 ° plies in the skin. 0.001 none 5.0

No Number of 0 ° plies in the skin. 0.001 none 5.0
Skin is a

[-45 N,/45N, ,/90N. o/()No]s
tape laminate.
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Table 7.2.2

Load / Imperfection Case Identification

LD
ID

P T Nx NXy _ P

( Ibs. ) Ob.- in.) Ob I in.) Ob I in.) (Wo/te) (psi)

1
2
3

4

5

6

7
8
9
10
11
12
13

14

-250000.
-250000.
-250000.
-250000.
-250000.

-250000.
-250000.
-250000.

-250000.
-94000.
-94000.
-94000.

0.0

0.0

0.0 -2652. 0.0 0.0 0.0
0.0 -2652. 0.0 0.25 0.0
0.0 -2652. 0.0 0.25 70.0

938000. -2652. 663. 0.0 0.0
938000. -2652. 663. 0.25 0.0
938000. -2652. 663. 0.25 70.0

1875000. -2652. 1326. 0.0 0.0

1875000. -2652. 1326. 0.25 0.0

1875000. -2652. 1326. 0.25 70.0
1410000. -997. 997. 0.0 0.0
1410000. -997. 997. 0.25 0.0
1410000. -997. 997. 0.25 70.0
1625000. 0.0 1149. 0.0 0.0
1625000. 0.0 1149. 0.0 70.0

188



Table 7.3.1

Optimal Designs of Unstiffened Cylinders

LD t, % % % NORM.

ID (in.) 4-45 9O 0 WT.

1 0.09966 41.322 44.120 14.558 1.000

2 0.14774 45.332 51.361 3.307 1.481

3 0.13322 51.244 48.748 0.008 1.335

4 0.12044 64.400 2.424 33.176 1.000

5 0.16085 57.085 29.880 13.035 1.337

6 O.13780 55.990 44.003 0.007 1.145

7 0.14608 76.159 0.007 23.834 1.000

8 0.17649 67.375 25.900 6.725 1.209

9 0.14745 66.434 33.374 0.192 1.009

10 0.12140 74.388 0.009 25.603 1.000

1I 0.13516 43.965 29.320 26.715 1.114

12 0.08758 67.775 30.217 2.008 0.721

13" 0.12057 76.447 0.008 23.545 1.000

13" 0.12230 40.722 27.094 32.184 1.020

* : 2 local optima located
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Table 7.3.2

Opfmal Designs of Strap-Stiffened Cylinders

LD t, % % % t! L I
ID (in.) 4-45 90 0 (in.) (in.)

NORM %

WT. RING
WT.

1

2

3
5

8
9

0.09966 41.322 44.120 14.558 0.0000 1.000

0.14483 49.823 47.513 2.664 0.0158 2.6442
0.13332 54.444 45.481 0.075 0.0017 1.000

0.15141 64.812 27.211 7.977 0.0868 1.6315
0.15241 70.863 27.818 1.319 0.2930 1.0000

0.14200 74.376 25.617 0.007 0.0342 1.9693

10 0.09350 89.332 .011 10.657 0.2242 1.0000

11 0.10814 75.243 16.111 8.646 0.2511 1.0000

12 0.08594 70.580 23.739 5.681 0.0274 1.0000

13 0.08960 85.908 0.011 14.081 0.2249 1.0000

14 0.05053 97.269 0.974 1.757 0.0059 1.000

1.000 0.000

1.476 1.255

1.339 0.055

1.313 3.951

1.133 7.756
0.995 2.044
0.852 9.519
0.983 9.239
0.719 1.388

0.826 9.919
0.422 0.510

Table 7.3.3

Optimal Designs of 'W'-Ring Stiffened Cylinders

LD t° % % % ty L/ Hw NORM %

ID (in.) 45 90 0 (in.) (in.) (in.) WT. RING
WT.

4 0.10785 63.441 16.624 19.935 0.0033 1.0000 3.0011 0.902 0.501

5 0.14900 62.502 37.474 0.024 0.0114 1.6524 2.4485 1.258 1.301

6 0.13466 57.345 42.611 0.044 0.0026 1.0000 3.5326 1.124 0.352

7 0.12179 81.440 5.386 13.174 0.0077 1.0000 2.6837 0.843 0.950

8 0.15408 64.230 30.839 4.931 0.0204 1.8397 2.4425 1.083 2.322

9 0.13733 71.984 28.008 0.008 0.0140 2.3243 2.7283 0.964 2.121

10 0.09546 87.698 0.010 12.292 0.0114 1.0000 1.9743 0.800 1.482

11 0.11019 69.206 14.753 16.041 0.0135 1.0053 2.4512 0.926 1.733

13 0.09022 83.669 0.011 16.320 0.0138 1.0000 1.9295 0.764 1.861
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Table 7.3.4

Active Constraints and Corresponding Lagrange Multipliers

For Unstiffcned Cylinder Designs

LD

ID

STABILITY STABILITY X _

CONSTRAINTS A s CONSTRAINTS

X L

A s

I

2

3

4

5

6

7

8

9

I0

II

12

13"

13"

n = 10 1.420F.,-5 -

n = 7 1.476F,.-5 -

n = 8 0.160E-5 No

n - 7 3.813E-4 -

n = 6 1.227E-4 -

n = 7 0.860E-5 .No

n = 7 1.399E-4 N,o

n : 6 4.602E-5 -

n -- 7 4.485E-5 -

n - 7 4.930E-5 Ngo

n = 6 6.993E-4

n = 8 1.333E-5

n = 7 2.726E-5 Ngo

n = 7 4.802E-5 -

0.263

0.121

0.302

0.271

0.2648

* : 2 local optima found
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Table7.3.5

Active Constraints and Corresponding Lagrange Multipliers

For Strap-Stiffened Cylinder Designs

LD STABILITY STABILITY X z' X z"

ID CONSTRAINTS A s CONSTRAINTS A s

1 n = 10 1.420E-5 N I, L! 0.868, 0.055

2 n = 7 6.484E-5 -

3 n = 8 0.154E-5 L! 0.071

5 n = 6 3.916E-5 - -

8 n - 6, n - 7 3.330E-5, 1.390E-4 L/ 1.2922

9 n = 7 1.500E-5 No 0.0786

10 n = 9, n = 10 1.170E-5, 0.328E-5 LI, No 1.088, 0.473

11 n = 8 0.982E-5 L! 1.152

12 n = 8 0.528E-5 L! 0.110

13 n -- 10 4.500E-5 Ngo, L! 0.975, 0.351

14 rt = 11, n = 14 0.908E-6, 1.170E-5 L! 0.053

Table 7.3.6

Active Constraints and Corresponding Lagrange Multipliers

For "r" Ring-Stiffened Cylinder Designs

LD STABILITY STABILITY X z" X z"

ID CONSTRAINTS A s CONSTRAINTS A s

4 rt = 9 1.132E-5 L! 0.099
5 n = 7 7.286E-6

6 n - 8 0.587E-6 L I, No 0.065, 0.161

7 n = 9 1.016E-5 L! 0.102
8 n = 7 1.312E-5

9 n = 7 1.180E-5 No 0.115

10 n = 10 1.310E-5 L I, Ngo 0.055, 0.356

11 n -- 8 0.993E-5 L/ 0.019

13 n = 10 1.187E-6 L!, N_o 0.090, 0.331
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Table7.4.1

Minimum Stress Constraint Values

For Strap-Stiffcnal Cylinder Optimal Designs

LD Fiber Fiber Mode Matrix Matrix Mode Strap/Skin

ID Mode Location Mode Location Mode

X / Layer X / Layer

1 0.536 (C) 0A62 / 0 ° 0.626 (C) 0500 / -1-46"

2 0.563 (C) 0.447 / 0 ° 0.639 (C) 0.500 / 4-46° 0.697 (AC)

3 0.430 (C) 0.447 / 0 ° 0.320 (C) 0.500 / 4-46 °

5 0.667 (C) 0.449 / 0 ° 0.769 (C) 0.500 / 4-460 0.405 (AC)

8 0.591 (C) 0.438 / 0 ° 0.695 (C) 0.500 / 4-460 0.318 (AT)

9 0.461 (C) 0.440 / 0 ° 0.433 (C) 0.500 / 4-460 0.436 (AC)

10 0.728 (C) 0.500 / 4-45 ° 0.861 (C) 0.451 / 4-46° 0.622 (AT)

11 0.762 (C) 0.500/4-45 ° 0.889 (C) 0.500/4-46 ° 0.785 (AT)

12 0.533 (C) 0.500/4-46° 0.283 (T) 0.500/4-46° 0.871 (AC)

13 0.867 (C) 0.178 / 4-4,5 ° 0.920 cr) 0.i78 / 4-46° 0.801 (AC)

14 0.410 (C) 0.500 / 4-45 ° -2.74 iT) 0.500 / 4-46 ° 0.954 (AC)

(T) : Tension (AT) : Adhesive Tension

(C) : Compression (AC) : Adhesive Compression
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Table 7A.2

Minimum Stress Constraint Values

For "T" Ring-Stiffened Cylinder Optimal Designs

LD Fiber Fiber Mode Matrix Matrix Mode Flange/Skin
113 Mode Location Mode Location Mode

X / Layer X / Layer

4 0.608 (C) 0.453 / 0 ° 0.676 (C) 0.455 / 4-45 ° 0.984 (AT)

5 0,553 (C) 0.440 / 0 ° 0.645 (C) 0.500 / 4-45 ° 0.848 (AC)

6 ** ** ** ** **
7 0.570 (C) 0.447 / 0 ° 0.581 (C) 0.447 / 4-4,5 ° 0.964 (AT)

8 0.628 (C) 0.500 / 4-45 ° 0.729 (C) 0.500 / 4-45 ° 0.782 (AC)

9 ** ** ** ** **

10 0.738 (C) 0.500 / 4-45 ° 0.877 (C) 0.451 / 4-45 ° 0.972 (AT)

11 0,780 (C) 0.500 / 4-45+ 0.903 (C) 0.500 / 4-45 ° 0.965 (AC)

13 0.865 (C) 0.178 / 4-4,5 ° 0.917 (C) 0.178 / 4-45 ° 0.966 (AT)

(T) : Tension (AT) : Adhesive Tension

(C) : Compression (AC) : Adhesive Compression

** : See Table 7.4.4 (Pressure to failure)
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Table7.4.3

Internal Pressure To Failure

For Strap-Stiffened Cylinder Optimal Designs

LD Pressure Fiber

ID (psi) Mode
Constraint

1 131.2 0.408 ((2)

2 227.1 0.437 (C)

3 161.3 0.363 ((2)

5 210.7 0.447 (C)

8 83.7 0.510 (C)

8* 185.0 0.380 (C)

9 160.9 0.349 ((2)

9_ 426.3 0.000 ((2)

10 23.8 0.662 ((2)

10" 33.3 0.635 ((2)

11 75.2 0.622 (C)

II* lO1.0 0.574 (C)

12 87.4 0.495 ({2)

12t 312.6 0.005 (C)

13 57.4 0.703 (C)

13" 64.8 0.681 (C)

14 26.2 0.646 ((2)

Fiber Mode Matrix Matrix Mode

Location Mode Location

X / Layer Constraint X / Layer

0.462 / 0 ° -.001 (C) 0.464 / -1-45"

0.447 / 0* 0.001 ((2) 0.500 / -1-45 °

0.447 / 00 -.001 (C) 0_500 / 4-45 °

0.500 / ±45 ° 0.004 tT) 0.500 / +45 °

0.500 / 4-45* 0.498 (C) 0.500 / 4-4,5*

0.500 / 4-45* 0.007 ('13 0.500 / +45*

0.500 / -t-45" -0.003 (1") 0.500 / -I-45"

0.500 / 4-45* -4.714 (13 0.500 / 4-45*

0.500 / 4-45* 0.568 CD 0.444 / 0*

0.500 / 4-45* 0.398 (T) 0.444 / 0*

0.500 / 4-45* 0.398 (13 0.500 / 4-45*

0.500 / 4-45* 0.064 (T) 0.500 / 4-45*

0.500 / 4-45* 0.006 tT) 0.500 / 4-45*

0.500 / 4-45* -7.680 fT) 0.500 / 4-45*

0.500 / 4-45* 0.140 CI') 0.500 / 4-45*

0.500 / 4-45* -0.023 ('13 0.500 / 4-45*

0.500 1 4-45* -0.002 cr) 0.500 / 4-45*

Swap/Skin
Mode

Constraint

0.651 (AC)

0.649 (AC)

O.OO2(CT)
0.069 (CD

0.393 (AC)

0.257 (AC)

o.ooo(CT)
0.000(CT)

0.000(CT)
0.000(CT)

0.874 (AC)

0.955 (AT)

0.o(o(CT)
-0.007(CT)

0.961 (AC)

(T) : Tension (AT) : Adhesive Tension

(12) : Compression (AC) : Adhesive Compression

* : Strap laminate changed to [0Ns/45Nt/45Nt ]r

t : Matrix cracking failure ignored

(CT) : Adbemnd Tension
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Table 7.4.4

Internal Pressure To Failure

For 'T' Ring-Stiffened Cylinder Optimal Designs

LD Pressure Fiber Fiber Mode Matrix Matrix Mode Flange/Skin

113 (psi) Mode Location Mode Location Mode

Constraint X / Layer Constraint X / Layer Constraint

4 69.0 0.495 (C) 0.453 / 0 ° .000 03 0.453 / 0 ° 0.986 (CT)

5 221.7 0.375 (C) 0.500 / 4-45 ° ..001 (C) 0.500 / 4-45 ° 0.810 (AC)

6 178.2 0.357 (C) 0.447 / 0 ° -.001 (C) 0.453 / 4-45 ° 0.946 (AC)

7 40.46 0.490 ((2) 0.447 / 0 ° .001 03 0.444 / 0 ° 0.970 (AT)

8 201.8 0.398 ((2) 0.500 1 4-45 ° .001 03 0.500 / 4-45 ° 0.767 (AC)

St 550.0 0.000 (C) 0.500 / 4-45 ° -5.651 (T) 0.500 / 4-45 ° 0.866 (AT)

9 163.8 0.327 (C) 0.500 / 4-45 ° .001 03 0.500 / 4-45 ° 0.699 (AT)

10 55.1 0.589 (C) 0.500 ! 4-45 ° .014 (T) 0.442 / 0 ° 0.979 (AT)

10t 184.4 -0.004 (T) 0.442 / 90 ° -5.603 03 0.442 / 90 ° 0.900 (AT)

11 107.4 0.583 ((2) 0.500 1 4-45 ° .001 (T) 0.500 / 4-45 ° 0.972 (AC)

13 64.4 0.683 (C) 0.500 / 4-45 ° 0.000 (T) 0.442 / 4-45 ° 0.964 (AT)

13t 243.2 -0.001 (T) 0A29 / 90 ° -8.052 03 0.500 1 4-45 ° 0.850 (AT)

(T) : Tension (AT) : Adhesive Tension

(C) : Compression (AC) : Adhesive Compression

t : Matrix cracking failure ignored

(CT) : Adherend Tension
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P, lb.

\ p, psi

I./2

L

Figure 1.1.1
Ring-Stiffened Cylinder And Imposed Loads
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_3,3

• .. "r'--_ _ .... 7

_3_+_ I I i /// I ///

_1, _2, _3 : Structural Axes

1, 2, 3 : Material Axes
Cylindrical Shell Middl

Figure 3.2.1
Typical Cylindrical Shell Lamina

_1, _2, _3" Structural Axes

1, 2, 3 : Material Axes
Figure 3.2.2

Typical Annular Plate Lamina
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_3 Axis ofRevolution

L

IJ3

IJ3

I./3

I LF

R

Figure 3.2.3
Cross Section of Ring-Stiffened Cylinder
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At

z3

z2

. _1,ui _I_/

_3,y

u3 _2" u2

l-

Axis of
Revolution

R

Section A-A

Figure3.3.I
Typical Conical ShellSegment
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i

_ Cylinder Segment i+l

- = vi+l 11

-_ 1cYil _,._Mi+l 11 MWebll

._ cyl +_lweb '

point "p" NllWeb k [,

-_ Vlll

_Cylindvr Segment i

Web Segment

+u3i+l +du3Web / d_lWeb

+u3i _ (Opo +ulweb
int "p"

+du3i / d_lCyl

+du3i+l / d_icyl

Figure 4.3.1

Prebuclding Equlibfium And Compatibility
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NSll, Adhesive _2__ °33 Axis of
,,._M_,ll / _ Revolution

NSl2®

VSll_ j _ .

Skin i _ _ Flange l+l
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Appendix A

LAMINA STRESS ANALYSIS OF PREBUCKLED CYLINDRICAL SHELL

A.1 Tangential Stresses

Fig. 3.2.1 shows a typical cylindrical shell lamina with fiber orientation angle 0,

global (structural) coordinate axes fi, _2, _ and material coordinate axes i23. Assum-

ing a state of plane suess exists within the lamina, the tangential stress components in

globalcoordinatesare givenby

where o'::,awv and r: w are stresses and ez=, eww and 7:w are strains with respect to

the tiff, _2_2 and fi_2 coordinate directions respectively and the _ii are the lamina

reduced sdffnesses in the global coordinate system ( see Jones s* ). The lamina strains

in the global coordinate system are given by

{**}{:!:}{***} (A.1.2)

For the cylindrical shell considered in this study, strains at any point, _3, through the

thickness of the laminate are given by the axisymmetric form of Eqs. (3.3.1.3) through

(3.3.1.5)

(A.1.3){**} }• }00
where _, _2 and _2 are nondimensional middle surface strains, _1 is the nondi-

mensional middle surface curvature defined in Eq. (4.1.19), L is the length and R

is the middle surface radius of the cylinder. Substituting F.qs. (4.1.19) and (4.1.21)

into (4.1.18) then substituting the resulting expressions for _], _2 and _2 into Eq.

(A.1.3) results in

_== -- EXI_'x -I- EX2_'xy + EX_w "° -I- EX4 -'-_. (A.1.4)
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_,, = (m'_) (A.I.5)

%_, = _ GXYflVx + GXY27Vxy + GXY3E ° + GXY4 (A.1.6)

where E ° is the nondimcnsional displacement of tlm middle surface of the cylindrical

shell in the _s direction defined in F_.q. (4.1.5) and

EXI -- I
A2_

A_12t°
EXs --

AmR

( -- )----* AI2B21
EX4 - - B n - _.

Au2

EY = to
R

A26An

GXY, = 6

"_26tj
GXY3 = _..

A22R

GXY, = - e,

(A.I.7)

Substitution of Eqs. (A.1.4) through (A.1.6) into Eq. (A.I.1) yields the stresses with

respect to the global coordinate system _1, _2, _3.

_,, = co \ dX2 ] _3+ G \ dX2 ] + C2_ + CjCx + C4-_xv

- _
_u, = Do \ dX 2 ] _3 + D1 \ dX _ ] + D2W' + D_Nx + D, Nxy

(_ (_ --
r=_ = Do \ dX _ } _ + D_ \ dX 2 ] + DuW' + D_Nx + D_-Nxy

where

(")
D, = _mEX, + _GXY_

(A.1.9)

(A.I.10)

C_ = "QnEX_ + "QnEY + _,,GXY_ D_ = _nEX_ + _mEY + "Q_,GXY_

D_ = _nEX_ + _,GXY_
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(")
El = _16EX4 + _.GXY4

E2 = ]_,eEX_ + _2eEY + _eeGX_

(,4.:.::)

and it is understood that the material properties used in these equations are evaluated

at the coordinate, _3, where stresses are to be calculated. The stresses in the (_,,_2,_3)

coordinate system, {_}gib, can be transformed to stresses in the (1, 2, 3) material coor-

dinate system. {¢r},.a t, using the following equation

{_}..,= [T,]{_},,_ (A.I.12)

where

C082

[T1 ] sin _ 8
- sin 8 cos 0

sin 2 8

cos 2 0

sin 0 cos 0 2sin0cos 0 l
--2 sin S cos 0

cos 2 8 - sin 2 8
(,4.:.:3)
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A.2 Interlaminar Stresses

Consistant with DMV theory, the axisymmetric elasticity equlibdum equations for

a single lamina of the imperfect cylindrical shell depicted in Fig 3.2.1 are (see page 24

of Ref. 54)

_Yzz _Yzz

_ ÷_ff-o
Or,_ Or,,

o_--V+_-_--o (A.2.2)

+ d_ ] = 0 (A.2.3)

where azz,al_, rz_, 1"z,,r_, and a,x are stresses with respect to the _]_], _2_2, _1_2,

_l_a, _2_a, and _a_a coordinate directions respectively, u; is the displacement of the

middle surface of the cylinder in the _3 direction,to. is the initial geometric imperfec-

tion and R is the middle surface radius of the cylinder. Nondimensionalizing _x, u_

and w. as shown in Table 1 yields

(A.2.4)oo.,-_C +_;--- o

_?+_;-o

+ o_3 R

+-g_-_zz _-_+ d_/ (,.)(7+a,, _ + d_l/ =0. (A.2.6)

where L is the length and t, is the total thickness of the cylinder. Substituting Eqs.

(A.1.8) through (A.I.10) into Eqs. (A.2.4) through (A.2.6), performing the integra-

tion with respect to _a and solving for the interlaminar stresses rx,, ryx and a:, gives

r., = TXZa(X)_ + TXZ2(X)_3 + F(X) (A.2.7)
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_,. = TYZ,(X)_ + TYZ2(X)_3 + G(X)

_.. = SZ,(X)(] + SZ2(X)e_ + SZ3(X)_, + H(X)

where X - 71 as shown in F_.q. (4.1.4) and

(A.2.10)

TXZ2(X)=_(._) dS'_ '' (._) d'_dX'

TYZ2(X) = - (-_) '_aX'

( Co ) d4_-"s z, (x ) = ._ -Z2T

(A.2.11)

(Aa.12)

(A.Z13)

(A.2.14)

(A.2.15)

- Lk-D"] + dX ]J

_Ir'.o,_(__+_._1Lk-_ ] dx ] j

\'-_"] \ dX2 + _2 ] j _

÷[_- r'.o._r._" _._1k-D-) \ dx_ + dX2]] -_x

+ -\ L _ ] \dX_ ÷ dX _ ]j_xY- _(A.2.16)
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The nondimensional radial displacement, _o, is given Eqs. (4.1.32), (4.1.38) and

(4.1.39) and the nondimensional initial geometric imperfection, _o is given in Eq.

(4.1.25). The functions of integration F(X), G( X), and H (X) can be determined us-

ing the appropriate surface traction on one side of the laminate and enforcing interlam-

inar continuity of the stresses given in Eqs. (A.2.7) through (A.2.9). For the cylindri-

cal shell under internal pressure, the appropriate boundary conditions on the innermost

surface of the first lamina are

_'z, = r_, = 0 and o',z = -p (A.2.17)

where p is the (positive) value of internal pressure. The functional form of F(X),

G(X), and H(X) can be determined easily since the solutions for rz,, ry: and #,z

given in Eqs. (A.2.7) through (A.2.9) are separated in X and _3. The necessary cal-

culations are straightforward but algebraically intensive; hence, they are omitted here

for brevity. Since integration of Eqs. (A.2.4) through (A.2.6) through the entire lam-

inate thickness must produce the shell equations used in section 4.1, the surface trac- -

tions on the exterior of the outermost surface of the outermost lamina must be zero.

This provides a useful check on the calculations. The resulting intedaminar stresses

can be written with respect to the material coordinate system using the following trans-

formation equations

_v33 _- O'zz

(A.2.18)

(A.2.19)

(A.2.20)
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Appendix B

FORMULATION OF EQUILIBRIUM EQUATIONS GOVERNING THE RESPONSE

OF A RING FLANGE AND ATrACHED SKIN AS A SYSTEM OF

FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS

While the nondimensional equations governing the tangential equilibrium of the

frame flange, Eqs. (4.4.38) and (4.4.39), and the tangential equilibrium of the at-

tached skin, Eqs. (4.4.41) and (4.4.42), are of order two with respect to the nondi-

mensional tangential displacements _ and _, the equations governing the radial equi-

librium, Eqs. (4.4.40) and (4.4.43), are of order three with respect to these quantifies.

The third order derivatives can be eliminated by first differentiating Eqs. (4.4.38) and

(4.4.39) withrespectto _1. TI_ yields

and

_fll

d_ d_
!

au f att_ attf _''2

Differentiating Eqs. (4.4.41) and (4.4.42) with respect to _'x gives

()_h L. d_, I; d_" =-ux_+(-_+_,g)_+.,q 'e_'d_

attS d'_l Y d'ff_, s •_ au_-.._-l _ au_ d_2Y + au_ d__2"
+ _ d'_ d6 d_ d6

and

(B.1)

(_.2)

(B.3)

(B.4)
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where(see_JS. (4.4.29) through (4.4.33))

(B._)

and

"_I --I "rI --I -rl

av I : Bae(B,_A_e - Be_A_)

"fflT_. -rI-nAaeA,e

(L,)"_l"rI'r/"rI"-rI
B,e(A,_Au - A_,A,_)

I --1

-71 71 7/s'ffle**11,ra56 _ .-Xll

w/_s 7/
all{ = ...... a" 16 _'_ 13"all 1

a';,74.- A,eAae

au{ "-- "" 16'_" ! _ ''ffil 6
"_I 71 ' -_I "vl
..11,c.66 -- g_I16_I16

av_ = --:_--u aa_ - -_ Au)
..llAee -- A_eA]e

av_ = -Y. B]*(A2eAu - A_2A_e)

AuAee - A_eA_e

AuA_e - AieAae

av_ = B_KBeA_e

A_aAee -- A_eA,_e

leC'13Ale

a_,_=-_-- W_7"

av_ : _t_eCa_Au

"'11":'66 -- "x16"*16

(B.s)
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Now substituting Hqs. (B.1) through (B.6) into Hqs. (4.4.38) through (4.4.43) and

coDecdng terms yields

_j,_; _s_ .r ._J .a'a_J .o'_- -I_a;3"
elI.---1_--=+el z_+el]--:___+el_--W-+elsuz'+el e_+el_-_1" - 0 (B.7)

_1__.__._1,,1_I ,,,1_1 -Id'_J
¢2, d_ + ez2 _ + "s _ + -- + ¢2_ ! + e2_]_ ' = 0 (B.8)_1 C24 _1

e3zl_+ e3_ + e3_'_a'f + e3_'_z/+ e3_ d_z /

+,31_.__.._.__:"i_-o, .,,_," ,_" -+ o3,_, +,3, _ +,3, _ = -p (B.9)

d2_-?, _..-o, _..-_, ._j ...,==.I
_• | _•u t_ 2 _•u_ u 3 _•uu 3 _=_. _u,u.-_ ._o#

---- -- -- -- ---o •-= (B.zo)eIz -2 +e12 -2 +e13 _ +el 4 ,-= +elsu I +el 6 ,.= +¢17u 1 0
d_ d_l d_ =¢_ acz

,2_ d-_--_ -Fe2_ +,2_ +,2: +e2_u-_" +,2_I=0 (B.11)
1

•g =__-[_

-..el_ = AzZ

-.eZ_= A_e

(B.12)

(8.13)
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e2;=_(¼)

(_)

(_)_2_= _ "if.

-.(£)e2_= A_6

(L,)

kRlt,]

(_')
(e)

e3IT --S--_-C3 3

_3{=-o_{- ='6

',,,,_+o_I- °,4

(B.14)

(_.--.)(_,)e3]-- l=+Bl= _ +_,i+

.-. (L, __ _.
e3_ = -A_2 \Roto) + C_s
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e3: = -A26

e3_ = at,; + av;

"-- --(_33e3; --z_

e3; = au; + av_

+ au; + av;

After eliminating the second terms in Eqs. (4.4.38) and (4.4.41) and the first terms

in F_s. (4.4.39) and (4.4.42) and dividing each of the resulting set of six equations

through by the coefficient of the highest order derivative appearing in each equation,

the system can be cast in the desired form (Eq. (4.4.45/) where

{_} =

_..o!
u 1

(ql)'
....=1
u 2

(_I)'
._o1
U 3

(_s)'
(g1)"
(_)

--'J'_8

U1

(_.)'
W

(_.)'

(u3)

(u3)

(U';3")"

(B.17)

and ' indicates differentiation with respect to _'1. The resulting nonzero terms of the
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16-by-16 matrix [B] are

B1,2 = 1.0

B2,1 = el/e2_'

- el{e2_ - e]{e2{

.B,,s = e2lel{
---/ ! -! /

ell e22 -- el_ e2 x

e'l "fe°'f e2_el_82,s :-- "s "2--

B2,e=--! / _/ !
ell e22 - el 2 e21

B2,xl=-- e2{_:{

Bu,z4 =-el ! o/ ,/,,,j/
I f"2 -- eJ'2 "'b I

BS,4 = 1.0

e:{e2{ - el{e2{

e2[el/,
B"s=-"1 I " _ /

el 1 e22 - el 2 e21

•:[,2{-
B,,.= el{e2{ - e2{el{

_4,9=-_i I ^I _.I -/
I eZ_ -- el 2 eZ!

B4,11 __--- e2{el/
--1 f y i-

ell e22 - el 2 e2:

B4,14----- el{e2{

elle2[ -- el{e2{

Bs,e = 1.0

B6,7 : 1.0

B_',S : 1.0

Be,2 = -_

Bs,4 = __e3_{

BS,S = --_

Bs,T = _e3{

,3{

BS,IO = --e3-_]

Bs,12 -- --e-339/

Bs,ls = _e3_

Bs,,5= __3[
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Bg,lO = 1.0

B1o,. = - el_e2_

Bla,ll = ..... e2_el_

"_10,14 = .....

Blo,le = - el_e2_ - e2_el_

elfe2_ - el_e2f

BIo,1 - -- ¢1_e2_

elfe2_ - el_e2f

Blo,s = -- e2_el,_

B o,6= --. el e2 
el_e2_ - else2[

Bll,12 = 1.0

B12,9 : -- el_e2_

B12,11 =--- e2_el_

el_e2_ - el_e2_-

B12,14 = _ e l_e2_ - el_e2_

el_e2_ - el_e2_

B12,1s -- - else2| - e2_'el_

elf¢2_ - el_e2f

B12,11 =---. elfe2_

elfe2_ el_e2f

B12,1I = --- e2_el_

B12,1e = el_e2f

B13,. = 1.0

BII,lS -= 1.0

B15,1e _ 1.0

B16,1o ._. c3_

e3_

e3_

e3|
B16,13 ----__.._._

e3[

e3_

e3f
e3|

Ble,2 = --.--.
e3f
e3f

B16,4 --" _____.
e3f

e3_
BIe,S --.-_..__

e3f
e3_

B16,7 -" ___..__
e3f

F'mally, neglecting the presence of any initial geometric imperfection, the only nonzero

term ofthe vector{F} is

(B.zg)
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Appendix C

ELEMENT S_S AND GEOMETRIC STIFFNESS MATRICES FOR

A CYLINDRICAL SHELL FINITE ELEMENT

As described in section 2 of Chapter 5, the finite element model of the second

variation of the nondimensional total potential energy for the cylindrical shell finite

element can be written as

2--,,52_ -- {we}r[Ke](W e } "4" {we}r[K_]'[W e} 4" 6 IIi_ d (C.1)

where 62_-_Zo,d is the second variation of the nondimensional total potential energy of

the loads applied to the boundaries (7- _) and (7- _.+z) and {W e} is the vector of

nondimensional element nodal buckling displacements and rotations (see Eq. (5.2.40))

where

{we}={ {w} {w} {wz} {v2} {v2} {w2} }T. (C.2)

[K e] is the element stiffness matrix given by

where

[K'] = [BllT[C][B1]d'_z (c.3)

(c.4)

[B1] =

_{¢,}r {0}r {0}r {0}r {0}T {0}r
{0}r {0}r_ _{a_}r {0}r _Z{_}T {0}r
{0}r _,{_}_" __{_}r {0}r {0}r

{0}r {0}r __{_}r {0}r {0}r {0}r
{0}r {0}r _ {_}r {0}r {0}r {0}r
{0} T {0} T {0} T {0} T {0} T 2_ d-_z {_2}T

{0}r {0}r (0}r _{_}r {0}r {0}r
(0}r _{_}r {0}r {0}r {0}r _{_}r

_{_1} T {0} r {0} T {0} T d_z {_II2 } r (0} T

{0}r {0}r {0}r {0}r {0}r d' ,_ _r

{0}r (0}r " {o}r {o}r {0}T _{_}r
{0}r {0}T -2_{_} T {0}r {0}T
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and {@i}, {@2}, {_i}, {_2}, {_I} and {_'_2}8-_ the interpolationfunctionsgiven in

Eq. (5.2.49),/Yisgiven in _l. (5.2.44),Z = L21(Rt,) where L isthe length,R is

the radiusto the middle surface,and t° isthe totalthicknessof the cylindricalshell.

The malrix [C] is

where [ c ] isgiven in _l. (5.2.39).[K_] isthe elcmenta]geometric stiffnessmatrix

given by

where

[_]=

[KS]= _i [KS] (c.o)
j--1

-[o] 1o] [o] [o] [o] [o1
[o] [o] [o] [o] [o] [o]
[o] [o] [Ky] [01 [0] [KS2]
[o] [o] [o] [o] [o] [o]
[o] [o] [o] [o] [o] [o]
[0] [0] [K_2]T [0] [0] [K_']

(c.7)

(c.8)

[/(El- N,2/_ {(-_ J {a'}T-- {a2} r d_, (c.9)

and

[K_]= _ r'÷'

-b|

[Kb]= _ r'÷'

[,B2]T[c][Blld'_I

[B1]T[c][B2]d_I

[mlT[Cl[Bq_

(0.10)

(0.11)

(C.12)

(C.13)
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where _'11 and _'12 are the applied nondimensional axial and torsional loads and _22

is the prebuclding nondimensional hoop stress resultant. [B2] is given by

[S2] =

{0}T {0}T

{0}T {0}T

{0}T {0}T

{0}T {0}T
{0}T {0}T
{0}T {0}T

{0}T {0}T

{0}T {0}T

{0}T {0}T

{0}T {0}T
{0}T {0}T

.{0}T {0}T

_--_-1 _-1 {_'_I}T {0} T {0} T {0} T

{0} T {0} T {0} T {0} T

{0}T {0}T {0}T -- [ d_-'_l -b _"_']d_,J _{n2}T

{0} T {0} T {0} T {0} T

{0} T {0} T {0} T {0} T

{o}T {o}T {o}T {o}T

{0} T {0} T {0} T [d_'_l "b _-_'] _ fn ITd_1 J d_s I _621

{0} T {O} T {0} T {0} T

[,_ + _1_(_,}_,_,J {o}T {o}T {o}T

{0} T {0} T {0} T {0} T

{0} T {0} T {0} T {0} T

{0} T {0} T {0} T {0} T

(C.14)

where _ isthe nondimensional prebucklingradialdisplacementand Eo isthe nondi-

mcnsional initialgeometric imperfectiongiven in Eq. (4.1.25).Note that[K _]and

K •[ a] are symmetric and [K e] is positive definite. The dimension of these matrices de-

pends upon the type of interpolation used for _'1, _2, ]71 and ]72; it is 16-by-16 for

Lagrange linear interpolations, 20-by-20 for Lagrange quadratic interpolations and 24-

by-24 for Lagrange cubic interpolations.
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AppendixD

ELEMENT STIFFNESS AND GEOMETRIC STIFFNESS MATRICES FOR

AN ANNULAR PLATE FINHE ELEMENT

As described in section 3 of chapter 5, the finite element model of the second

variation of the nondimensional total potential energy for the annular plate finite ele-

ment can be written as

_ = {w'}T[K']{W'} + {w'}T[K_]{W'} + 6 nto,_ (D._)

where 62H-_io,,d is the second variation of the nondimensional total potential energy of

the loads applied to the boundaries (_ = _) and (_ = _+x) and (W'} is the vector of

nondimensional element nodal buckling displacements and rotations (see Eq. (5.3.24))

where

{w'}={ {uwt) {vwx) {wwx} (uw2) {vw2) {ww2} }r.

(D.2)

[K _] is the element stiffness matrix given by

+l L- -[K'] - [B1]T[c"][.B1](1 - ._x)d_,
-,,b l

(D.3)

where

[Bll = [[BIAI[BIB]I
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[BIA] -

[roB] =

_{_1} T

{0} T

{0} T

{0} T

{0} T

{0} T

{0} T

_{¢_}T/-_

{0} T

{o}T
{o}T

{0} T

{0} T

-_{,h}T/'i

{0} T-

{o}T
{o}r

d_, 1TM

-Z{¢_}r/m

{0}r

{0}T

{0}r
{0}r

{o}r

{o}r

.._.._f tTc 1T
d_ 1"1/ +L{@I}T/R_

{o}r

{o}r

{o}r
{o}r

{#_}r/_

{0}r

{0}r
{0}r
{0}r

{0}r

__{_}r/_

{0}r

{0}r
{0}r
{0}r

{0}r

{0}r

_{#_}Z + L{#_}T/_

{0}r

{0} T

{o}T
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{o}r

{o}r

{o}r

{B1A}s,3

{o}T
{o}r

{o}r

{o}r

{o}r
{o}r

{B1A}n,3

{o}r

{o}r

{o}r

{o}r
{o}r

{B1B}e,3

{o}r

{o}r

{o}r

-_{n2} r

{BIB}n,3

{o}r

(D.5)

(D.6)



L
_= 1 - --_, (D.7)

{B1A}5,s - _'_ {fh} T + _
(D.8)

-2/3 L 2/3 f d_"_l IT

{B1a}12,s f (D.9)

{BIB}6,,--_-_ {n2} r + 7 L'd_l j
(Da0)

{roB}"'3 = F {a'}T + m t'_'_-,_

and {_1}, {_2}, {@1}, {@2}, {_e_l} and {_2} ale the interpolation functions given

in Fxl. (5.3.24), _0 is given in Eq. (5.3.23), L is the length and R is the radius of the

middle surface of the cylindrical shell. The matrix [C] is

[%,[oi]] (D.12)

where [ c ] is given in Eq. (5.3.19). [K_] is the elemental geometric stiffness matrix

given by

where

[gh]= _ [uS1
j=l

(D.13)

[Ky] p] [0] [01 [K&'] [0]
[0] [g_'] [0] [K_'] [0] [0]
[0] [01 [K_'] [0l [01 [K_']
[0] [K_'Ir [01 [Kg] [0] [0]

[gba]r [0] [0] [0] [g_5] [0]
[0] [0] [K_6]T [0] [0] [g_6]

(D.14)

[Ky] = _ 2_ {_a} {_,}T (_)d_,
(D.15)
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(D._0)

[K_2 ] -- 1 {¢,} {@,}T (D.z7)

[Kp]= _+' [-_V22_(_){¢2}{_1}r] (_)dL (D.18)

-,, 11td--_,)t-_-TJ+N22_{a'}fal}T(_)dL (D.19)

_r,+' ][K_]= _12_[,fda21, }T ,[d__l_
t(d-'_'_J {fh - {f_2} T d_,-,1 s t d_l I

(D.20)

[K_ 4] = 2_- {@2} {@2} T (_)d_] (D.21)

[ (_)2 ]
[g+' -- 1 {_2} {_2}T

= N22_- (_)dL[K_] Jrl (D.22)

]_2_ _2
[g_61--" _ 11 { d_'_2_l}{d, lj + _'22'___ {_"_2} {_..__}T (_)d_l

(D.23)
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[K_I -- [B2IT[CI[BI]('i) _I (D.24)

[K_] = [B1]T[oI[B2I('s)_I

-I, I

(D.25)

j_÷l[K_] = [B2]T[Cl[B2I('_)d_I (D.26)

where _ix and _22 are the nondimensional radial and circumferential prebuckling

stress resultants. [B2] is given by

{o}T

{0} T

{o}T

{o}T
{o}T
{o}T

[B2]=
{O} T

(O} T

{0} T

{O} T

{0} T

{0} T

{0} T (-_)"_{_1} T {0} T {0} T {0} T

{0} T {0} T {0} T {0} T {0} T

{0} T {0} T {0} T {0} T -- _( _-_l'){a2}T

{0} T {0} T {0} T {0} T {0} T

{0} T {0} T {0} T {0} T {0} T

{o}T {o}T {o}T {o}T {o}T
d T

{0} T {0} T {0} T {0} T (_)_'I {_'_2}

{O} T {0} T {0} T {0} T {0} T

{0} T _(_-_l'c){nl} T {0} T {0} T {0} T
-- d,_l

(0} T {0} T {0} T {0} T {O} T

{0} T {0} T {0} T {0} T {0} T

{0} T {0} T {0} T {0} T {0} T
(D.27)

where _ is the nondimensional prebuciding out-of-plane displacement. [K'] and [K_]

are symmetric and [K _] is positive definite. The dimension of these matrices depends
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uponthetypeof interpolationusedfor _P'I, _'-'_, _'_[71 and V'-W2; it is 16-by-16

for Lagrange linear interpolations, 20-by-20 for Lagrange quadratic interpolations and

24-by-24 for Lagrange cubic interpolations.
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AppendixE

LDLT DECOMPOSITION OF A SYMMETRIC MATRIX

For the symmetric matrix [M] there exists a factorization of [M]

[M]= ILl[DI[L]T (E.1)

where [L] is a lower triangular matrix with all diagonal terms equal to 1.0 and [D] is a

diagonal matrix. If Mi_ is an element of [M] then from Eq. (E.1)

Mij = E lik dk lit
k=l

(E.2)

where lij is the ijth term of the [L] matrix and dk is the kth diagonal term of the [D]

matrix. Eq. (E.2) can be rewritten as

j--1

k=l

(E.3)

but,

lij = 1.0 (E.4)

hence,

lij =

Setting j = i in Eel. (E.3) yields

j--I

Mij - _ lik dk ljk
k=l

dj
(E.5)

M. =/ii di 1. +

i--1

E li_ d_ lit (E.6)
k=l

thus, using Eq. (E.4) with j = i,

di -" Mii -

i-1

E
k----I

lit dk lit. (E.7)
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Now let

.A4'_t-- lit dr. (E.S)

Substituting Eq. (E.8) into Eq. (E.7) produces

i--I

d, = M,,- _ _,, :,_. (E.9)
k----I

Substituting F_ts. (E.4) and (E.8) into Eq. (E.3) and solving for A_0 yields

i--1

-_ii = Mii - _ i_i, lo,. (E.10)
k=l

Also, substituting Eq. (E.8) into Eq. (E.5) yields

j--1

M,i- E M,_li,
l_j = k=, (E.11)

d_

F'mally, solving for Mij in Fal. (E.10) and substituting the result into Eq. (E.11)

yields

l_1 -- _.". (E.12)

The banded nature of [M] allows for very rapid factofization. From F_l. (E.9)

d_ = M, - ,_/_11_1 - A_/_ 1_2 -... - 2Q_0_1)li(i_1 ) (E.13)

but from Eq. (E.10)

_/_il -" Mil

: (E.14)

Mi(i-l) "- Mi(i-l) - _/_ill(i-l)l - ,/_i2/(i-I)2 -.,. - _/_i(i-2)[(i-l)(i-2).

As a consequence of the symmetry of [M], in any row i only terms up to the ith col-

tram are needed for the factorization. Furthermore, from Eq. (E.14) it can be seen that
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if,say Mil through Mi,, are allzero where n < i- 1,then h:/ilthrough Min are also

allzeroso thatdi can be writtenas

di -- Mii - J_fi(n+l)li(n+l) -- J_i(n+2)li(n+2) --... -- J_i(i--l)Ii(i-1)

where n + 1 indicatesthe firstnonzero colunm in row i of [M]. Hence, only terms

within the half bandwidth of each row of [M] need to be considered during the factor-

ization. This liberty to ignore all terms outside of the half bandwidth of each row of

[M] in the calculation of [D] yields a substantial savings in the amount of computer

time needed to perform the LDL T decomposition of [M] - [K(ni) + Ka(ni; A)] in

section 6.6.1.
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individuals,

"_m ec_-nls_To=r co_ive educational and research

........ pursuits, -

• forum and agency for internal interactions at

Virginia Tech.

The Center for Composite Materials and Structures is

supported by a vigorous program of activity at Virginia Tech

that has developed since 1963. During 1988-89 and lg8g-

90 fiscal years sponsored research project expenditures for

investigation of composite materials and structures have

totalled approximately five million dollars annually.

Various Center faculty are internationally recognized for

their leadership in composite materials and composite

structures through books, lectures, workshops, professional

society activities, and research papers.

Research is conducted in a wide variety of areas including

design and analysis of composite materials and composite
structures, chemistry of materials and surfaces,

characterization of material properties, development of new

material systems, and relations between damage and response

of composites. Extensive laboratories are available for

mechanical testing, nondestructive testing and evaluation,

stress analysis, polymer synthesis and characterization,
material surface characterization, component fabrication, and

other specialties.

Educational activities include ten formal courses offered

at the undergraduate and graduate levels dealing with the

physics, chemistry, mechanics, and design of composite
materials and structures. As of 1991, 129 Doctoral and 172

Master's students have completed graduate programs and

are now active in industry, government, and education in the

United States and abroad. The Center averaged 125 active

student members during 1989-90 and 1990-91. Many
Bachelor-level students have been trained in various aspects

of composite materials and structures.

The Center has invested in the development of an

administrative database (now fully operational for Center

members) and a composite material properties database

(now ready for data entry).

In addition to the CCMS Report Series, the Center

sponsers a bi-monthly Seminar Series attended by faculty,
staff, and students and the Center jointly sponsors a sesqui-
annual Technical Review with the Center for Adhesive and

Sealant Science which is well attended by government and

corporate contacts.

Aerospace and Ocean
ngmeermg

Raphael T. Haftka
Eric R. Johnson
Rakesh K. Kapania

Chemical Engineering

Donald G. Baird
Garth L. Wilkes

Chemistry

John G Dillard
Harry W. Gibson
James E. McGrath
Thomas C. Ward
James P. Wightman

Civil Engineering

Richard M. Barker
Richard E. Weyers

Clothing and Textiles

Jeanette M. Cardamone

MEMBERS OF THE CENTER

Electrical Engineering

Ioannis M. Besieris
Richard O. Claus
Douglas K. Lindner

Engineering Science and Mechanics

Robert Czamek
David A. Dillard
Normal E. Dowling
John C. Duke, Jr.
Daniel Frederick
O. Hayden Gdffin, Jr.
Zafer Gurdal
Robert A. Heller
Edmund G. Henneke, II
Michael W. Hyer
Robert M. Jones
Ronald D. Kriz
Liviu Librescu
Alfred C. Lees
Don H. Morris
John Morton
All H. Nayfeh
Daniel Post
J. N. Reddy
Kenneth L. Reifsnider
C. W. Smith
Wayne W. SlJnchcomb
Surer Thangjitham

Industrial and Systems
Engineering

Joel A. Nachlas

Materials Engineering

Inquiries should be directed to:
Center for Composite Materials and Structures

Virginia Tech

Blacksburg, VA 24061-0257

Phone: (703) 231-4969

Fax: (703) 231-9452

Jesse J. Brown, Jr.
Seshu B. Desu
Ronald S. Gordon
D. P. H. Hasselman
Robert W. Hendricks
Ronald G. Kander

Mathematlca

Wemer E. Kohler

Mechanical Engineering

Charles E. Knight
Craig A. Rogers
Cures H. Stem
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